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Abstract

This paper evaluates the efficacy of the urban growth boundary (UGB) as a second-best sub-
stitute for a first-best toll regime in a congested city. Numerical results show that, while a
UGB is welfare improving, validating previous theoretical results, the utility gain it generates
is a very small fraction of that achieved under a toll regime. Thus, the UGB is not a useful
instrument for attacking the distortions caused by unpriced traffic congestion.
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1. Introduction

In response to a growing focus on the phenomenon of urban sprawl by the press, policy-

makers, and the general public, economists have begun to apply the tools of urban economics

to analysis of the sprawl issue. The resulting small literature has identified several proximate

causes for the rapid spatial expansion of cities, such as investment in an automobile-oriented

transportation system (see Glaeser and Kahn (2004) and Nechyba and Walsh (2004)). In ad-

dition, the analysis has drawn a distinction between spatial expansion that is warranted on

efficiency grounds and expansion that is excessive, being a result of market failures and other

distortions that impart an upward bias to urban growth (see Brueckner (2000, 2001)). One

such market failure is the failure by developers to account for the potential amenity value

of open space around cities, which can lead to excessive development at the urban fringe.

Similarly, a failure to account for the externality involved in traffic congestion, which makes

the social cost of commuting higher than the private cost, leads to commute trips that are

inefficiently long and cities that are excessively spread out.

A favored policy instrument for dealing with urban sprawl is the “urban growth boundary,”

or UGB, which specifies a city boundary beyond which development may not take place.1 As

argued by Brueckner (2001), a UGB works perfectly as a restraint on inefficient growth in some

circumstances. For example, if the market failure leading to excessive expansion is an over-

looked open-space amenity, then the social optimum can be achieved either by a development

tax equal to vacant land’s amenity value per acre, or by a UGB set at the appropriate dis-

tance from the urban center. However, a UGB cannot fully correct some other sprawl-inducing

market failures, with the congestion externality being a case in point. To fully correct this

distortion, policymakers must instead levy a congestion toll on urban commuters. By raising
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the cost of intracity travel, this toll shrinks the spatial size of the city while greatly increasing

central population densities. This densification, which is illustrated in the numerical results of

Wheaton (1998), is socially desirable because it limits severe traffic congestion to a relatively

small area around the CBD. By contrast, a UGB does not promote central densification to

the same extent as a toll regime, limiting its efficacy, although it does address one symptom

of market failure by reducing the city’s spatial size.

Despite these limitations, a properly chosen UGB is nevertheless welfare-improving in a

congested city, as demonstrated in an earlier theoretical literature. This conclusion can be

inferred from the results of Kanemoto (1977) and Arnott (1979), who show that the shadow

value of land is less than the market value at the city’s edge in a laissez-faire equilibrium. The

benefit of a UGB as a second-best instrument is more clearly highlighted in the analysis of

Pines and Sadka (1985), who extend and synthesize the work of Kanemoto and Arnott.

The purpose of the present paper is to add a quantitative dimension to this earlier second-

best analysis of UGBs. In particular, the paper evaluates the efficacy of the UGB as a policy

instrument in a numerical model of a congested city, comparing the welfare gain generated by

a UGB to the gain achieved under the first-best toll regime. The results have a number of

surprising features, as explained in the ensuing discussion.

The present research was partly inspired by the earlier study of Anas and Rhee (2004),

who provide a numerical appraisal of tolls and UGBs in a city that is congested but differs sub-

stantially from the standard monocentric model, which was used in the above analyses. Their

city has dispersed, instead of centralized, employment, and intracity travel consists of both

commuting and shopping trips. In addition, consumer location choices are influenced by ran-

dom idiosyncratic preferences. The authors’ numerical results show that, in such a framework,

a congestion-toll regime raises welfare while imposition of a UGB is welfare-reducing. The

UGB’s harmful impact differs, of course, from the positive impact that arises in the standard

model, a clear consequence of the differences in model structures. In carrying out the present

research, the goal was to provide a counterpoint to this negative finding by highlighting and

quantifying the positive impact of UGBs in the standard model. However, as seen below, the

present results convey a message that, in the end, is not too different from that of Anas and
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Rhee.

Section 2 of the paper presents the analytical framework used in the numerical calculations,

section 3 presents the results of those calculations, and section 4 offers conclusions.

2. Analytical Framework

2a. The setup

The analytical framework relies on the standard model of a congested monocentric city, as

developed in many previous papers. It also incorporates several auxiliary assumptions used in

the model of Pines and Sadka (1985), as explained below.

Consumers are assumed to have Cobb-Douglas preferences over consumption of housing,

denoted q and measured in square feet of floor space, and the nonhousing good c, with the

utility function given by v(c, q) = c1−αqα, where 0 < α < 1. Utility is maximized with respect

to the budget constraint c + pq = y − t(x), where p is the price per square foot of housing, y

is income, and t(x) is commuting cost at distance x from the CBD. Substituting the resulting

demand functions back into the utility function, equating the result to a parametric utility

level u, and solving for p yields p = Ψ(y− t(x))
1
α u− 1

α , where Ψ is a constant. Substituting this

housing price function into the demand function for q yields q = Γ(y − t(x))
(α−1)

α u
1
α , where Γ

is a constant.

Housing output, measured in square feet of floor space per unit of land, is given by θSβ,

where S represents housing capital per unit of land and 0 < β < 1. Housing developers

maximize profit per unit of land, given by pθSβ − S − r, where r is rent per unit of land

and the price of capital is normalized at unity. Solving the relevant first-order condition for

S and substituting p yields S = Λ(y − t(x))κu−κ, where κ = 1/α(1 − β) and Λ is a constant.

Substituting this solution into the profit function, equating the result to zero, and solving for

land rent yields

r = Ω(y − t(x))κu−κ ≡ r(y − t(x), u), (1)

where Ω is a constant. Finally, noting that population density D equals housing square feet

per unit of land divided by square feet per dwelling, it follows that D = θSβ/q. Substituting
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the previous solutions,

D = Φ(y − t(x))κ−1u−κ ≡ D(y − t(x), u), (2)

where Φ is a constant.

The city is assumed to be circular, and a fraction 1 − ρ of the land at each distance is

available for housing, with the fraction ρ used for a radial road network. Therefore, the number

of residents living beyond a distance x from the CBD is given by

n(x) =

∫ x

x
2πs(1 − ρ)D(y − t(s), u)ds, (3)

where x is the distance to the urban boundary.

With congested travel, the cost per mile of commuting at distance x, denoted T (x), depends

on the traffic flow across the ring at x (given by n(x)) relative to the road width at x, equal

to 2πxρ. Adopting the functional form used in much of the prior literature,

T (x) = η + δ

[
n(x)

2πxρ

]γ

, (4)

where all parameters are positive.

Differentiating (4) with respect to n(x), the increase in cost per mile at x when another

commuter is added to the traffic flow equals γδ[n(x)/2πxρ]γ−1(1/2πxρ). Multiplying by n(x),

which gives the number of commuters affected, then yields the total damage from the congestion

externality at x. The congestion toll per mile at x, which charges commuters for this damage,

is thus given by

τ (x) = γδ

[
n(x)

2πxρ

]γ

. (5)

Commuting cost from distance x, inclusive of the toll, equals the sum of the toll per mile

and direct costs per mile across distances inside of x. Thus, the function t(x) appearing in the

above equations satisfies

t(x) =

∫ x

1
[T (s) + τ (s)]ds. (6)
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In a city where no toll is levied, τ (x) in (5) is set to zero. Note in (6) that the CBD extends

out to x = 1, with commuting cost in its interior equal to zero.2

Differentiating (3) and (6) with respect to x yields the following relationships, which play

a central role in the numerical exercise:

n′(x) = −2πx(1− ρ)D(y − t(x), u) (7)

t′(x) = T (x) + τ (x). (8)

Eq. (7) indicates that, as x increases, the population outside of x declines at a rate equal to

the population residing at x. Eq. (8) shows that commuting cost rises with x at a rate equal

to the direct cost per mile at x plus the toll at x. In addition to (7), the function n(x) satisfies

the constraints n(x) = 0 and n(1) = N , where N is the fixed city population.

In order to conduct a straightforward welfare analysis, the city is assumed to be fully

closed, following Pines and Sadka (1985), with an equal share of differential residential land rent

accruing to each urban resident as income.3 In addition, congestion-toll revenue is redistributed

to consumers on an equal per capita basis, possibly reflecting a reduction in other unmodeled

taxes. Therefore, letting ra denote agricultural rent, the income parameter y appearing in the

equations above must satisfy

y = yexog +
1

N

∫ x

1
2πx(1 − ρ)[r(y − t(x), u)− ra]dx +

1

N

∫ x

1
n(x)τ (x)dx

≡ yexog + yrent + ytoll, (9)

where yexog, yrent and ytoll are the components of y from exogenous sources, redistributed

rents, and redistributed toll revenues, respectively. Note that although y appears explicitly in

the first integral in (9), n(x), T (x) and τ (x) also depend implicitly on this variable. Thus,

the level of y, set parametrically, affects both yrent and ytoll, and (9) requires that this level is

self-validating in that the components on the RHS add up to y itself.
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An additional condition that is sometimes relevant requires that rent at the edge of the

city equals the agricultural rent. This condition is written

r(y − t(x), u) = ra. (10)

2b. Finding the equilibrium

In both the laissez-faire and toll-regime cases, the variables y, u and x must assume values

such that eqs. (1)–(6) and (9)–(10) are satisfied along with the above endpoint constraints on

n(x). By contrast, when a UGB is imposed, x is set exogenously, and eq. (10) does not apply

(the congestion toll τ (x) is also set at zero).

It is important to note that, in contrast to urban models without congestion, finding the

equilibrium is not simply a matter of computing the solution to a set of static simultaneous

equations. To see the reason, observe that T (x), commuting cost per mile at x, depends

from (4) on the distribution of the urban population across all locations in the city, which

determines n(x) and thus the traffic flow at x. Since T (x) in turn helps determines t(x) and

thus population density at x via (2), it follows that density at any one location in the city

depends on densities at all other locations. Given this interdependence, the equilibrium must

be computed using an iterative procedure that relies on the key equations (7) and (8), which

involve the derivatives of the n and t functions.4

This procedure works as follows. The city is divided into narrow, discrete rings indexed by

i, each with a width ε , set at a small value. The relationship xi = 1 + ε (i− 1) gives the inner

radius of ring i, so that ring 1 has inner radius 1, corresponding to the edge of the CBD. In

computing the variables of the model, the distance measure x is replaced by the ring subscript

i. Thus, D(y − t(x), u) in (2) is replaced by

Di = Φ(y − ti))
κ−1u−κ. (11)

In addition, (4) is used to write

Ti = η + δ[ni/2πxiρ]γ . (12)
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The variable ni is incremented using recursive relationship

ni+1 = ni + ε n′(xi) = ni − ε 2πxi(1 − ρ)Di, (13)

where the first equality is based on a first-order approximation and the second uses (7) to

substitute for n′(xi). Similarly, ti is incremented using

ti+1 = ti + ε t′(xi) = ti + ε (Ti + τi), (14)

where the second equality uses (8) to substitute for t′(xi). The iterative process starts at i = 1,

with t1 = 0 (indicating no commuting cost from the CBD edge) and n1 = N . At each iteration,

land rent is computed using

ri = Ω(y − ti)
κu−κ. (15

The iterative process is carried out conditional on the values of y and u, but these values

must be consistent with the achievement of equilibrium, as follows. In the laissez-faire and

toll-regime cases, the iterations stop when i reaches a value i∗ such that ni∗ ≥ 0 and ni∗+1 < 0,

indicating that the population just fits inside an x value of xi∗. Satisfaction of two equilibrium

conditions is then checked. First, the value of ri∗ is compared to ra. Second, the value of

yexog + yrent + ytoll from (9), which has been computed cumulatively in a discrete manner over

the sequence of iterations, is compared to assumed value of y. If the comparison values diverge

by more than the desired degree of accuracy in either case, the values of y and u are adjusted

and the iterative process is repeated.5

In the UGB case, the iterations stop when i reaches a value i∗∗ such that xi∗∗ equals the

specified value of x. The previous comparison involving y is then carried out, and ni∗∗ is

compared to zero. Both y and u are adjusted until the comparison values match with a given

degree of accuracy.
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3. Numerical Results

This section presents several numerical examples, each of which involves a comparison of

three equilibria: the laissez-faire equilibrium, the equilibrium under the toll regime, and the

equilibrium with an optimally chosen UGB. The goal is to gauge the efficacy of a UGB by

comparing the welfare gain it generates to the gain realized under the first-best toll regime.

The examples rely on a host of assumptions on parameter values, as follows. The housing

exponent α in the Cobb-Douglas utility function is set at 0.15, and the exponent β in the

housing production function is set at 0.85 (the multiplicative factor θ is set at 0.0001).6 Twenty

percent of the land in each ring is devoted to roads, so that ρ = 0.2. The intercept parameter

η in the commuting-cost function (4), which is taken to represent the money cost of travel, is

set at $225, reflecting a $0.36 cost per mile (the current Federal allowance), 250 round trips

per year, and 1.25 workers per household (as in Bertaud and Brueckner (2005)). The values

of the other commuting-cost parameters (δ and γ) differ across the numerical examples, as

explained below. Again following Bertaud and Brueckner (2005), agricultural land rent ra is

set at $40,000 per square mile, reflecting a land value of $1210 per acre and a discount rate of

5 percent. The exogenous income value yexog is set at $40,000, a figure approximately equal

to US household income, and the city population N is set at 3 million. Finally, the parameter

ε , which represents ring width, is set at 0.001 miles, a small value intended to achieve a high

level of accuracy in identifying the equilibria.

In example 1, the congestion exponent γ in (4) is set equal to 1.50, with the multiplicative

factor δ set at 0.000001.7 This example is shown in the topmost section of Table 1, with results

for the laissez-faire equilibrium given in the first row. In this equilibruim, the city radius is

22.683 miles, and the utility level is 7771.8997. The value of yrent is $853, so that total income

y equals $40,835. Commuting cost at the edge of the city, denoted t in the table, is $7558,

which represents 19 percent of income. Population density D1 at the edge of the CBD is

388,861 persons per square mile, and land rent r1 at this location is $357 million per square

mile.

Under the toll regime, the city radius shrinks by about 1.5 miles to 21.158 miles, a decline

of about 7 percent. Central density rises by almost a factor of four, to 1,432,612 persons per
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square mile, and central land rent rises by a similar factor. Rental income rises slightly, but

income from redistributed tolls equals $1582, leading to a notably higher y value of $42,449.

Commuting cost t at the edge of the city, which now includes the toll, rises to $8112. In results

not shown in the Table, the toll’s share in commuting cost per mile (equal to τ (x)/[T (x)+τ (x)])

falls from a high of 59 percent at the CBD’s edge to 40 percent at x = 10 and then to 29 percent

at x, reflecting a decline in congestion moving away from the CBD.

The utility gain under the toll regime is 66.1881 relative to the laissez-faire case. Different

approaches can be used to derive the dollar equivalent of this gain, but the following approach

seems most natural. In particular, the laissez-faire model is solved holding utility fixed at the

first-best level, with yexog and y adjusted to achieve equilibrium. The resulting increase in

yexog tells how much exogenous income would have to rise in the laissez-faire case to generate

the utility achieved under the toll regime. For example 1, that income increase is equal to

$335, or 0.8 percent of yexog.

Before turning to the analysis of the UGB case, consider the laissez-faire and toll-regime

equilibria for the remaining examples. Under example 2, shown in the second part of Table

1, the congestion exponent γ is reduced to 1.25, with δ raised to 0.00002. Note that the

higher δ partly offsets the commuting-cost reduction from the decline in γ. Imposition of the

toll regime shrinks the city radius from 23.293 (a larger value than in the first example) to

21.906 miles. Central density and land rent start out lower than before, but their proportional

increases under the toll regime are similar to those in the first example. The values of t and

ytoll are smaller than in example 1, partly reflecting lower tolls. The toll regime raises utility

by 31.7010, a smaller increase than in example 1. This utility gain is equivalent to a $158

increase in yexog, a gain of 0.4 percent.

Congestion is reduced further in example 3, where γ = 1.12 and δ = .0001, and one effect

is a larger city radius and a reduction in central density and rent in the laissez-faire case.

Imposition of the toll regime raises utility by 21.122, a yet-smaller amount that is equivalent

to a $107 increase in yexog, while generating now-familiar changes in the remaining variables.

In example 4, the last case considered, γ is reduced to 1.00, the value used by Wheaton (1978),

while the value of δ is unchanged. The city’s laissez-faire radius rises again, while central
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density and rent are further reduced. The changes under the toll regime again follow previous

patterns, but now the utility gain is miniscule, being equal to 1.0372. This gain is equivalent

to an increase in yexog of only $5.

Consider now the UGB cases. For each example, the congestion toll is set at zero, and

UGB equilibria are computed for a series of x values ranging below the laissez-faire equilibrium

value (x is reduced in steps of 0.1 miles). The x value in the series associated with the highest

utility level is then selected. The typical pattern of utilities resulting from tightening of the

UGB is shown in Figure 1, which pertains to example 3.

Turning to the numerical results, the optimal x value in example 1 is 18.9 miles, a radius

2.25 miles smaller than under the toll regime. Central density increases only slightly under the

optimal UGB, in constrast to the dramatic increase under the toll regime, while t falls and yrent

and hence y show slight increases. As noted above, the UGB’s failure to foster strong central

densification in a congested city limits its efficacy, a conclusion that is dramatically illustrated

by the small utility gain under the UGB relative to the laissez-faire case. This increase is only

0.4409, a magnitude that represents only 0.7 percent of the utility gain under the first-best

toll regime.

A similar pattern appears in the other examples. In each case, the optimal UGB lies inside

the toll-regime’s x, as illustrated in Figure 1 for example 3. In addition, central densification

with the UGB is only slight, and the utility increase relative to the laissez-fare case is small.

Interestingly, for all the examples, the utility increase ranges between 0.7 and 0.8 percent of

the gain under the toll regime. Thus, the results suggest what seems to be a robust conclusion:

a UGB is a very ineffective substitute for the first-best toll regime, yielding approximately 1

percent of the utility gain generated by that regime.8

Another noteworthy aspect of the results is that the dollar-equivalent welfare gain from the

toll regime can be quite small. While the $335 gain under example 1 nonnegligible, the $5 gain

in the less-congested case of example 4 is surprisingly slight, suggesting that the market failure

from unpriced traffic congestion in some cases might not be significant enough to warrant our

attention. Of course, this conclusion would be overturned if the unitary congestion exponent

in example 4 were deemed to be unrealistically low.
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It is worth noting that Wheaton’s (1998) calculations yield welfare gains from correcting the

congestion externality that are much larger than the present ones. However, several differences

between the papers’ approaches may make their results noncomparable. First, while Wheaton

computes the social optimum for his city, he does not decentralize the optimum via an explicit

toll regime. Although redistribution of the toll revenue in the present model should limit any

effect from this difference, some effect may remain. Second, land rent in Wheaton’s model

flows to absentee owners rather than being redistributed to urban residents, and this feature

presents an obstacle to straightforward computation of an aggregate welfare gain. Despite these

differences in approach, the land-use changes in moving from the laissez-faire equilibrium to

the first-best optimal city are similar in both papers.

4. Conclusion

This paper has evaluated the efficacy of urban growth boundaries as a second-best remedy

for unpriced traffic congestion. The numerical results suggest that a UGB is a very poor

substitute for a first-best toll regime, capturing only a tiny fraction of the welfare gain it

generates. In this sense, the paper’s findings mirror the negative conclusions of Anas and Rhee

(1994), which were derived in a nonstandard model. By showing that a UGB reduces welfare,

their analysis suggests that policymakers operating in an urban environment like that depicted

in their model should shun the UGB as a potential policy instrument. Although a UGB is not

harmful in standard monocentric setting, the present results suggest that this instrument is

virtually useless in attacking the distortions caused by the congestion externality. Thus, like

Anas and Rhee (1994), the implication is that UGBs can be dropped from the list of potential

instruments for dealing with unpriced traffic congestion.
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Table 1
Numerical Results

#1 (γ = 1.50, δ = .000001)

x utility gain y yrent ytoll t D1 r1

laissez faire 22.683 7710.8997 – 40,835.28 835.28 0 7558.55 388,861 3.573×108

toll regime 21.158 7777.0878 66.1881 42,449.13 866.47 1582.67 8886.81 1,432,612 1.368×109

best UGB 18.9 7711.3406 0.4409 (0.7%) 40,841.80 841.80 0 6691.29 390,575 3.589×108

#2 (γ = 1.25, δ = .00002)

x utility gain y yrent ytoll t D1 r1

laissez faire 23.293 7840.0825 – 40,843.10 843.10 0 7009.01 183,377 1.722×108

toll regime 21.906 7871.7835 31.7010 42,085.21 863.83 1221.39 8112.99 575,534 5.450×108

best UGB 20.8 7840.3000 0.2175 (0.7%) 40,847.51 847.51 0 6439.94 188,026 1.728×108

#3 (γ = 1.12, δ = .0001)

x utility gain y yrent ytoll t D1 r1

laissez faire 23.426 7884.9808 – 40,846.56 846.56 0 6818.73 145,911 1.341×108

toll regime 22.122 7906.6760 21.6952 42,897.93 863.47 1034.45 7776.38 389,569 3.672×108

best UGB 21.4 7885.1465 0.1657 (0.8%) 40,850.17 850.17 0 6356.00 146,335 1.345×108

#4 (γ = 1.00, δ = .0001)

x utility gain y yrent ytoll t D1 r1

laissez faire 25.200 8107.8021 – 40,858.34 858.34 0 5868.49 42,820 3.936×107

toll regime 24.826 8108.8393 1.0372 41,169.08 861.45 307.63 6174.65 59,173 5.481×107

best UGB 24.8 8107.8099 0.0078 (0.8%) 40,859.11 859.11 0 5778.20 42,853 3.940×107



Figure 1: Welfare under a UGB regime (example 3)
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Footnotes

∗I thank David Pines for helpful discussions in the course of this work and Alex Anas for useful
comments on an earlier draft. They are not responsible, however, for any shortcomings in
the paper.

1See Brueckner (2000, 2001) and Ding, Knaap and Hopkins (1999) for institutional discussion
regarding the use of UGBs.

2This assumption follows Wheaton (1978). The CBD cannot be a point at x = 0 because the
adjacent road width is then zero, implying infinite commuting cost per mile near the CBD
under (4).

3It is assumed that transport land is acquired by the city at the agricultural rent, so that the
differential rent it generates equals zero.

4The equilibrium is presumed to be unique, although no proof of this assumption is given.
The numerical calculations never suggested the existence of multiple equilibria.

5The utility level u is adjusted in increments of .0001, and at the equilibrium value in the
laissez-faire and toll-regime cases, changing u causes ri∗ to jump from one side of ra to the
other. The second requirement is that yexog+yrent+ytoll must match y to the second decimal
place, a condition that is achieved by appropriate adjustment of y as u is changed. In the
UGB equilibrium, changing u causes ni∗∗ to jump from one side of zero to the other, while
y is adjusted as above.

6The 0.15 value for the parameter α, which equals the housing expenditure share, could be
viewed as too small. However, this parameter was set to help generate a realistic spatial size
for the city. Larger α values yielded an unrealistically large city radius.

7An attempt was made to carry out computations for the larger γ value of 2.0, but the
adjustment methods for u and y failed in this case (see footnote 5), so that the equilibrium
could not be identified.

8As discussed by Brueckner (2001), imposition of a UGB when one is not needed reduces
welfare. In the present model, if congestion is eliminated by setting δ equal to zero, and a
UGB reduces the city radius by ten percent below its laissez-faire value (as in Table 1), then
utility falls by 0.4088, a small effect. Brueckner (2001) shows that a much larger welfare loss
can be generated by a more stringent UGB.

13




