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Abstract

This paper proposes a semiparametric methodology to estimate an education produc-
tion function with peer e¤ects. The advantage of this methodology is that we estimate and
identify peers e¤ects under weak assumptions, in particular without imposing a functional
form for the production function. We assume that student�s achievement is a function of
student�s quality and peer�s quality. Student�s quality is de�ned as a linear combination
of student�s characteristics, and peer�s quality is a symmetric function of this single index
in each classroom. Peer e¤ects are identi�ed as the marginal derivative of the production
function in relation to peer�s quality. We propose a three step procedure to estimate the
objects of interest. In the �rst step, we use a generalized version of the rank regression
proposed by Abrevaya (2000) to estimate the parameters inside the index that de�nes
quality. In the second and third steps, we use the control function approach proposed by
Newey, Powell and Vella (1999). This methodology is applied to estimate peer e¤ects in the
last year of elementary school in Brazil. Using how students were allocated to classrooms
as a vector of instruments, we �nd evidence that peer e¤ects are positive for the all the
students, independent of their own quality. In addition, students with an average quality
have a higher marginal bene�t from peer�s quality than a low quality students. The results
also show that student�s achievement is monotonically increased with student�s quality.
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1 Introduction

The e¤ect of peer characteristics on student achievement has been a subject of interest

in social science for a long time. Many authors emphasize the importance of having a

better understanding of the education production function, and of the relative importance

of each input into this function. In economics, the interest in peer e¤ects is due to the

large social multipliers that can be created from student interactions in classrooms. For

example, in a classroom, the achievement of students can improve due to interaction with

their classmates; students can teach one another, improving their performances. Convinc-

ing evidence of peer e¤ects also helps to de�ne the optimal way to allocate students to

classrooms. Social programs try to integrate students with di¤erent characteristics into

classrooms as a way of improving student outcome and behavior. For example, in the US,

given the large disparities between achievement of white and nonwhite students, desegre-

gation is pointed to as a way to raise nonwhite achievement and decrease the gap between

white and nonwhite performances in school. However, there are many theoretical models

that argue that the optimal way to improve students achievement is to segregate students

by type (Lazear, 2001).

It is hard to �nd convincing evidence of peer e¤ects in classrooms. The baseline model

for estimating peer e¤ects is the linear-in-means model. The reduced form of this model

associates a student outcome with his own characteristics and the characteristics of his

peers. Characteristics of peers are equal to the average characteristics of the students

in the group. This model has many shortcomings. As pointed out by many authors

(Manski, 2003; Mo¢ t, 2001), there are many ways in which endogeneity can arise in this

model. The most common one is that individuals can self-select into groups, creating

"endogenous membership". Parents can put pressure on schools to assign their children

to classrooms with students with similar backgrounds. This self-selection of children to

classrooms generates unobservable variables that are correlated with peer characteristics.

Endogeneity can also arise from measurement errors in the variable that measures peer

characteristics (Sacerdote, 2001). Another drawback of the linear-in-means model is its

linearity. In this model, the outcome is a¤ected linearly by the mean of the characteristics

of the students in the group. If students are reallocated to di¤erent groups, but the mean

of student characteristics in each group is kept �xed, the peer e¤ects are zero even though

the distribution of peers inside each group has changed. Moreover, if the mean of student

characteristics in one group is increased, it must be decreased in another group. In this
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linear-in-means model, the gains in one group are compensated by the loss in another

group. No matter how peers are allocated among groups, the total achievement will be the

same.

This paper develops a semiparametric methodology to estimate the education produc-

tion function and peer e¤ects. This methodology generalizes the linear-in-means model

in two di¤erent ways. First, it estimates peer e¤ects without imposing a functional form

for the production function; student outcome varies with peer characteristics in nonlinear

ways. In addition, it deals with endogeneity using a control function approach. This way

of dealing with endogeneity is not new in the literature. Many papers use an instrumen-

tal variable approach to deal with endogeneity (Cooley, 2006; Evans, Oates and Schwab,

1992). As pointed out by Arnott and Rowse (1987), the e¤ect of peer characteristics on

student outcome depends on the curvature of the education production function. Di¤erent

from parametric models, this methodology provides a way to estimate peer e¤ects free

from the bias caused by assuming the wrong functional form for the production function.

It estimates peer e¤ects controlling for endogeneity, but with few parametric restrictions

on the format of the production function.

The production function estimated in this paper has peer quality and student quality

as inputs. Student quality is de�ned as a linear combination of student characteristics

(sex, race, family background, etc.) and peer quality is a symmetric function of this single

index in the classroom. Peer e¤ects are identi�ed as the average marginal derivative of the

education production function with respect to peer quality. They represent the marginal

e¤ect of an increase in peer quality on student achievement, while keeping the other inputs

�xed. In the semiparametric model proposed in this chapter, peer e¤ects can vary with

student quality. This is an important advantage of this model in relation to the linear-in-

means model, since the marginal bene�t of being in a high quality classroom can vary by

student quality.

To identify and estimate the production function and its derivative, we propose a three

step procedure. In the �rst step, we estimate the parameters inside the linear index that

de�nes student quality, using a generalized version of the rank estimator proposed by Abre-

vaya (2000). The main assumption is that student achievement is monotonic in student

quality, which implies that students with high quality should have a higher outcome than

students with low quality. Under this monotonicity assumption, the rank of student quality

will be correlated with the rank of student achievement in a classroom, and the rank esti-

mator will maximize this correlation in all the groups. In this �rst step, we use the within
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classroom variation to estimate student quality. Peer quality is de�ned as a symmetric

function of this index in the classroom.

The second and third steps deal with the endogeneity presented in models that estimate

peer e¤ects. Parents can self-select their children into classrooms based on preferences,

student characteristics, teacher characteristics, etc. Even controlling for classroom and

school characteristics, there are unobservable components that are correlated with peer

quality. To deal with the endogeneity of peer quality, we assume the existence of suitable

instrumental variables and follow the control function approach proposed by Newey, Powell

and Vella (1999).

There is a growing literature that proposes alternative methods to estimate peer e¤ects

that overcome the shortcomings of the linear-in-means model. Based on the framework

of the linear-in-means model, Graham (2008) develops a method that estimates the mag-

nitude of social interactions based on excess variance contrast. Using the data from the

Tennessee class size reduction experiment, Project Star, this method is applied to study

the variation in achievement of students in kindergarten. The author shows that peer

characteristics explain a large amount of the individual-level variation of test scores. Sac-

erdote (2001) demonstrates the importance of peer e¤ects using data from an experiment

in which individuals were randomly assigned to their peers. Recently, other nonparametric

and semiparametric methods have been proposed. Graham, Imbens and Ridder (2009) de-

velop a model to estimate the e¤ect on the average outcome of changing the allocation rule

of an input among heterogeneous �rms, while keeping the marginal distribution of the other

inputs �xed. In another paper, Graham, Imbens and Ridder (2008) propose a structural

model in which there are two types of individuals, "low" and "high". In this model, indi-

vidual outcomes are a function of the fraction of high types in their social groups. Within

this framework, the authors identify measures of social spillovers that are estimated us-

ing nonparametric methods. In both paper, the authors don�t deal with endogeneity, but

they use the selection on observables approach. They assume that there is a vector of

latent variable such that controlling for these variables, the unobservable components are

independent of peer and student characteristics. Cooley (2006) uses a �exible parametric

model to estimate the education production function and peer e¤ects. Using a quantile

regression, she estimates a structural function that relates student achievement with peer

characteristics and peer achievement. The quantile regression allows student achievement,

at di¤erent points in its distribution, to respond di¤erently to peer characteristics. In a

recent paper, Du�o, Dupas and Kremer (2009) estimates the be�ts of tracking, using a
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random experiment in Kenya. The authors �nd that students at all levels of the achieve-

ment�s distributions bene�t from tracking. Students on tracking schools score 0.14 higher

on average than students in nontracking schools.

The key contribution of this new methodology is to provide a method to estimate

the education production function and peer e¤ects under weak assumptions about the

functional form of this function and the distribution of unobservable components. In

addition, using a single index to de�ne peer quality, we can use a �exible de�nition of peer

quality (in the sense that we can include as many peer characteristics as we want to de�ne

quality of the peers), while the dimensionality of the model is kept under control. One of

the drawbacks of this methodology is that since we don�t impose enough structure in our

model, we cannot predict the optimal way to allocate students to classrooms. Graham,

Imbens and Ridder (2008) �nd the optimal way to allocate students to classrooms in a

structural model in which there are two types of individual, "low" and "high". In this

model, there are two di¤erent production functions depending on the type of individual,

and one of the inputs in these production functions is the percentage of high types in the

social group of the individual. These authors show that the allocation rule that maximizes

individual�s outcome is a function of the curvature of the production function and of the

distribution of types in the population. Since we don�t assume a speci�c format for the

production function, our estimators are unable to directly guide any reallocation policy.

However, this model will be able to tell which students bene�t more from their peers, since

in this model peer e¤ects vary with student quality. This model provides insights into

the bene�t of aggregating good students or bad students into good classrooms, and this

information can help the design of reallocation policies within a school. Another drawback

of this methodology is that, with the production function unrestricted, we cannot obtain

estimators that converge at the standard parametric rate. Assuming that objective function

maximized in the �rst stage is very smooth, the rate of convergence of our estimators can

get close to the standard rates for a series estimator.

This new methodology is applied to estimate peer e¤ects in classrooms in Brazil We

use data provided by the Brazilian National Evaluation System of Basic Education (SAEB)

in 2003 to estimate the average production function and peer e¤ects for students in the last

year of elementary school in public and private schools. We estimate these parameters using

the semiparametric methodology developed, and for comparison purposes, we estimate a

linear-in-means model. Using the way students were allocated to classrooms as a vector of

instruments, peer quality as the average of the single index in a classroom and a production
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function that relates math test scores with student and peer quality, we �nd peer e¤ects

that are positive for all students, except the ones at the bottom of the distribution of

achievement. In addition, the average production function increases monotonically with

student quality, although the relationship between peer quality and student achievement

is not clear. It appears that test scores of average students increase with peer quality, but

test scores of high quality students decrease with peer quality in very low quality groups.

The results obtained using the semiparametric methodology highlight the limitations of

the linear-in-means model, namely, that it does not allow peer e¤ects to vary with student

quality, and only captures the average e¤ect.

This paper is divided in seven sections. Section 2 describes the general model considered

in this paper, and describe the estimands of interest, the average production function and

peer e¤ects. In the next section, we describe the assumptions necessary to identify these

estimands, and in section 4 we state our estimation procedure. In section 5, we discuss

the rate of convergences and the asymptotic distribution of the estimators. In section 6,

we present applied exercise in which we estimate the average production function and peer

e¤ects for students in the last year of elementary school in Brazil in 2003. The last section

summarizes our main �ndings and presents some possible extensions.

2 Model

The baseline model for estimating peer e¤ects is the linear-in-means model. The reduced

form of this model relates the outcome of the individual with his own characteristics and

the characteristics of his peer group

Yig = X
0
ig� +X

0
g + �g + "ig

where Yig is the outcome of individual i in group g; Xig represents the characteristics of the

individual, Xg is the mean of these characteristics in group g, "ig represents the individual

heterogeneity and �g represents the correlated e¤ects at the level of the group. The two

elements, � and ", are not observable. Many authors (Brock and Durlauf (2000), Glaeser

and Scheinkman (2002), Graham (2004)) derive this equation as a social equilibrium in a

decision problem in which the individual maximizes his utility, which depends on his own

characteristics, a common environment shared by the individuals in his peer group, and

the stock of social capital in his peer group. Another way to interpret this equation is
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to consider the individual�s characteristics, the environment shared by the group and the

stock of social capital in group g as inputs into the production function of the outcome Yig
(Becker and Murphy (2000), Lazear (2001), Cooley (2006)).

We generalize the linear-in-means model by estimating this production function without

imposing a functional form. Peer e¤ects are characterized by the marginal e¤ect of peer

characteristics on the outcome of interest. Our model assumes that there is an education

production function H (:) that relates a student�s achievement with his own quality and

the quality of his peer

Yig = H (Qig; Qg; �g; "ig)

where Qig represents the quality of student i in group g; Qg is the quality of group

g. In this model, a group is de�ned as a certain classroom in certain school. We im-

pose a "single index" restriction that says that student quality is a linear combination of

student characteristics, and peer quality is a symmetric function this index in group g.

Let Mg represents the number of individuals in group g2, Qig (�) = X 0
ig� and Qg (�) =

f
�
X

0
1g�;X

0
2g�; :::;X

0
Mgg

�
�
. The vector X includes characteristics of the students, such as

sex, age, family background, etc. This "single index" assumption is a reduction dimen-

sionality that simpli�es identi�cation and estimation in a model that does not impose a

functional form for the production function and includes peer characteristics as one of its

inputs. This assumption allows us to use a �exible de�nition of peer quality in the sense

that we can use as many characteristics as we need to de�ne peer quality, but keep the

dimensionality of the vector of inputs inside this production function under control. For

simplicity, we de�ne Qig � Qig (�) and Qg � Qg (�) :
Following Graham and Hahn (2003), we understand this model as a quasi-panel, where

the dimension that goes to in�nity is the number of groups, de�ned as classrooms, and the

dimension that is �xed is the number of students in each classroom. To be able to identify

and estimate the parameters of interest, we impose some restrictions:

2Some applied works use the "leave-own-out" mean, Xg(�j) =
P
j 6=iXjg

Mg�1 , in which the mean is computed
without taking in account the quality of student j; and Xg(�j) is used in the place of Xg in the expression
for Yjg. When Mg = 2, using the "leave-own-out" is the same as using the total mean in our methodology.
Some authors (Graham and Hahn, 2003) argue that the "leave-own-out" is appropriate for small groups,
when all members are observed.
For large groups, the di¤erence between the "leave-own-out" and the mean used in the main text is

irrelevant. In this methodological paper, we choose not to use the "leave-own-out" for simplicity. The
methodology proposed in this paper can be apllied to the "leave-own-out" mean case with mild modi�ca-
tions.
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Assumption 2.1 (Additivity) : H is additively separable 3,

Yig = H (Qig; Qg) + �g + "ig for all i = 1; :::;Mg; g = 1; :::; N

where Qig = X 0
ig� and Qg = X

0
g�:

This assumption is restrictive, but it simpli�es identi�cation and estimation in the semi-

parametric case. By imposing the restriction that unobservable components are additive in

this model, we assume that achievement is a linear function of unobservable components,

and there are no interactions between the unobservable and observable components.

Assumption 2.2 (Symmetry): f
�
X1g; X2g; :::; XMgg

�
can be written as

f
�
X

0
1g�;X

0
2g�; :::;X

0
Mgg�

�
= f

�
X1g; X2g; :::; XMgg

�0
�

where f
�
X1g; X2g; :::; XMgg

�
is a symmetric function with E

h
kf (X1g; :::; XNgg)k2

i
<1:

This assumption restricts the set of functions that are covered in this paper, but it

simpli�es the derivation of the asymptotic properties of the estimator. This assumption

covers the standard case of the literature in which Qg (�) is just the average of the singly

index, and it allows us to go away from representing peer e¤ects as just averages. For

example, it allows us to use the standard deviation of X;Qg (�) = 1
Mg

PMg

i=1

�
Xig �Xg

�0
�:

Assumption 2.3 (Strict Exogeneity conditional on �g) :

E
�
"igjQ1g; :::; QMgg; �g

�
= 0 for all i = 1; :::;Mg; g = 1; :::; N

Assumption 2.4 (Control Function) : There is a vector of instrumental variables
Ag such that,

Qg = 	(Ag;Wg) + vg

where

� Wg represent the characteristics of group g

3As pointed by Rau (2006), this assumption is very restrictive, since it imposes the constraint that
@H(Qig;Qg;�g;"ig)

@Qig
=

@H(Qjg;Qg;�g;"ig)
@Qjg

for all pairs of (i; j) and that
@H(qig;Qg;�g;"ig)

@Qg
=

@H(qjg;Qg;�g;"ig)
@Qg

for all g. This model does not allow interactions between the error and the covariates, which means that it
does not incorporate the "sorting e¤ect".
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� E [vgjAg;Wg] = 0

� E [�gj vg; Ag;Wg] = E [�gj vg;Wg]

Under these assumptions4:

E [�gjQg; Ag;Wg] = E [�gj vg; Ag;Wg]

= E [�gj vg;Wg] = � (vg;Wg)

Assumption 2.3 imposes that Qig is strictly exogenous conditional on the correlated

e¤ects, �g: In other words, conditional on the correlated e¤ects, individual quality is un-

correlated with individual heterogeneity. This assumption is standard in the panel data

literature, and is called strict exogeneity conditional on a latent variable. In this literature,

it is common to assume that all the endogeneity comes from the fact that unobservable

group components are correlated with the covariates5. In assumption 2.4, we state the

endogeneity problem of peer e¤ects models. This assumption establishes that the unob-

servable correlated e¤ect is correlated with peer quality, E [�gjQg] 6= 0. As emphasized

before, this correlation can come from the fact that students are usually non-randomly

assigned to classrooms. Students can be assigned to classrooms based on teacher and par-

ents preference, on unobservable characteristics of the students and classrooms, etc. In

this model, we deal with endogeneity by following a control function approach. We assume

that there is a vector of instruments (Ag) that allow us to separate out the endogenous

part of peer quality from the exogenous one. Assumption 2.4 imposes that the conditional

expectation of �g is independent of the vector of instruments, but dependent on the con-

trol variable (vg) and the characteristics of the group (Wg). In other words, the correlated

e¤ects (�g) are related to peer quality only through vg and Wg. Notice that this assump-

tion is di¤erent than the usual exclusion assumption in a control function approach. In

this case, the conditional expectation of �g is not only a function of vg, but also of the

characteristics of the group. We assume a "local" exclusion restriction in the sense that

the vector of instruments impacts the outcome of interest (Yig) only through peer quality,

after we control for group characteristics (for a certain subpopulation) and the unobserv-

able component of peer quality. Conditional on vg and Wg, variations in peer quality are

stochastically independent of variations in the correlated e¤ects (�g) and we can separate

4Notice that we can replace these two assumptions by (vg; �g; "ig)?AgjWg and (�g; "ig)?Wg.
5 If the exogeneity assumption does not hold, in the semiparametric case, the estimation of the average

structural function H (Qig; Qg) and the endogeneity function � (vg;Wg) are going to be biased.
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out the e¤ect of peer quality on the outcome of interest from the e¤ect of the correlated

e¤ects.

In assumption 2.4, � (vg;Wg) represents the function that allows to control for the

endogeneity of peer quality. This function is called control function, and represents the

conditional expectation of �g: The conditional expectation of �g is a function of the unob-

servable component of peer quality and of the characteristics of the group.

In the next assumption, we assume that the observations are i:i:d across groups.

Assumption 2.5 An iid sample
��
Yg1; :::; YgMg ; Xg1; :::; XgMg ;Wg; Ag; �g

�
: g = 1; :::; Ng

is drawn from the population with distribution F0.

We estimate and identify two objects of interest, the average production function and

peer e¤ects. In the notation of Blundell and Powell (2001), the average production function

is the average structural function (ASF),

�1 (qi; q) = E [H (qi; q) + �g + "ig]

= H (qi; q)

where (qi; q) represent �xed levels of the random variables (Qig; Qg).

This function allows us to evaluate the average student�s achievement at certain levels

of inputs. This function can be used to evaluate each student achievement at a �xed level

of student quality and peer quality.

Peer e¤ects are de�ned as the average marginal e¤ect of peer quality on student achieve-

ment, and it is given by the marginal productivity of Qg. The peer e¤ects equal to the

average marginal derivative,

�2 (qi) =
@E [H (qi; Qg) + �g + "ig]

@Qg
= E

�
@

@Qg
H (qi; Qg)

�
where the second inequality holds by interchanging di¤erentiation and expectation, and by

assumptions 2.1, 2.3 and 2.4. The expectation is taken over the marginal distribution of

Qg.

Peer e¤ects give the average e¤ect on student achievement of an increase in peer quality

by one unit, for a speci�c value of student quality. An equivalent expression for the average

derivative is lim�Qg!0
E[(H(qi;Qg+�Qg)+�g+"ig)�(H(qi;Qg)+�g+"ig)]

�Qg
. Suppose that the Princi-

pal in a certain school allocated two students with the same quality to two classrooms that
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have the same characteristics, except that one classroom has peer quality qg and the other

has peer quality qg + 1. In this experiment, the average treatment e¤ect is the di¤erence

between the achievements of the two students. This average treatment e¤ect is basically

the average impact of a one unit increase in peer quality on student achievement, which is

similar to average marginal e¤ect of peer quality on student outcome.

We should interpret this second estimand carefully. If this estimator is positive for

an individual with a high quality, but is negative for an individual with low quality, it

means that an increase in the quality of the group increases the achievements high quality

students, but decreases low quality students� achievements. We might interpret these

results as evidence that high quality types bene�t more from an increase in peer quality,

and hence segregation by type is optimal. However, this analysis is not correct. As pointed

by Arnott and Rowse (1987) and Graham, Imbens and Ridder (2007), the allocation that

maximizes the average outcome also depends on the curvature of the production function

and the marginal distribution of types (high quality or low quality) in the population. The

optimal way to allocate students to classrooms depends on the distribution of quality in

the school and on the degree of complementarity between student quality and peer quality.

We propose a semiparametric methodology to identify and estimate the parameters

of interest without assuming a functional form for H (Qig; Qg). Instead of a parametric

form for H (Qig; Qg) ; we impose monotonicity of H (Qig; Qg) in relation to Qig and place

restrictions on the distribution of "ig. To estimate the average production function and

peer e¤ects, we propose a three step procedure. In the �rst step, we need to construct the

"single index" that de�nes student quality. Using the within-group variation, we identify

and estimate the parameters � that are in the linear combination that de�nes Qig; Qig =

X 0
ig�. These parameters are estimated using a generalized version of rank regression.

The idea is that in each classroom, we rank the students based on their quality. Based

on the monotonicity assumption imposed on H (Qig; Qg), we expect that students with

high quality have high achievement. In other words, we expect that inside a group, if

Qig > Qjg, then Yig > Yjg. The parameters � will maximize the rank correlation between

Yig and Qig for individuals in the same group. When we compare individuals within

each group, we subtract o¤ the correlated e¤ects and use the within group variation to

estimate �. The identi�cation of � is based not only on monotonicity of H (Qig; Qg) ;

but also on the assumption that the individual heterogeneities are stationary inside the

group. The stationary assumption imposes that the conditional distribution function of the

individual unobservables are the same for all the individuals inside the group, conditional
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on the vector of covariates and the uncorrelated e¤ects. This assumption implies that the

distribution of " does not change when we move among the individuals inside a group.

If we assume that "igs are exchangeable, in the sense that the joint distribution of "igs

does not change under permutation, this stationarity assumption holds. Notice that this

assumption is weaker than assuming that the individual heterogeneities ("igs) are i:i:d

inside the group. If assumption 2.1 does not hold, and the unobservable components of

this model (�g and "ig) are non-additive elements, the stationary assumption needs to be

replaced by the i:i:d assumption. Using this estimator of �, we can get the single indexes

that represent student quality and peer quality.

The next two steps are based on the control function approach presented in Newey,

Powell and Vella (1999). In the second step, we estimate 	(Ag;Wg) using a series ap-

proach. In this case, we use a vector of approximating functions of (Ag;Wg) to estimate

the nonparametric regression of Qg on (Ag;Wg), using bQg estimated in the �rst step in
the place of the true Qg. Using assumption 2.4, the residual bvg of this regression is given
by bvg = bQg � b	(Ag;Wg). In the last step, we use a vector of approximating functions of

(Qig; Qg;Wg; vg) to estimate the nonparametric regression of Yig on Qig; Qg;Wg; vg, using

the bQig; bQg; bvg obtained in the previous steps in the place of the true values. The advantage
of this series approach is that we can impose our additivity assumption (assumption 2.1).

We use a vector of approximating functions such that each term in the vector depends

either on
� bQig; bQg� or on (bvg;Wg), but not on both. In this case, the estimator of the

average structural function (H (Qig; Qg)) can be recovered by pulling out the components

that depend only on
� bQig; bQg� ; and the estimator of � (vg;Wg) can be constructed by the

terms that depend only on (bvg;Wg) :

The drawback of this procedure is that our estimators converge to a rate that is slower

than the usual parametric rate,
p
N . In spite of this disadvantage, this procedure is one of

the few methodologies that estimates the peer e¤ects without imposing a functional form for

the function that relates achievement to student, peer, school and teacher characteristics.

3 Identi�cation

In this model, we �rst need to identify the parameters inside the index that de�ne student�s

quality. To identify �, we use a rank estimator that is a generalized version of the rank

estimator proposed by Abrevaya (2000). When we obtain peer and student quality, we can

identify the average structural function and peer e¤ects by imposing additional assumptions
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about the behavior of Qig and Qg:

3.1 Identi�cation of � using rank regression

To be able to identify � using a rank estimator, we need to impose the following assump-

tions:

Assumption 3.1 (Monotonicity) : H (Qig; Qg) : Rq ! R is strictly increasing in the
�rst argument Qig:

This assumption is key for identi�cation of �, and it implies that inside each group, the

rank of X 0
i� and the rank of Yi are positively correlated.

Assumption 3.2 (Stationary) : "igs are stationary inside each group conditional on
X =

�
X1; :::; XMg

�
and �g, with positive density almost everywhere, which implies that:

F "ig�"jg jX;�= F "jg�"ig jX;� for all (i; j) in group g.

Assumption 3.3 : (a) Let �Xij = Xig �Xjg: For all i; j; the support of the distribution
of �X is not contained in any proper linear subspace of Rk, where k = dim (X) :

(b) For all i; j, the elements in �X can be rearranged such that �1 6= 0 and for almost
all values of � eXijg = (�Xij;2; :::;�Xij;k), �Xij;1 has everywhere positive Lebesgue measure
conditional on � eXijg and Yig 6= Yjg:
Assumption 3.4 : j�1j = 1 and e� = (�2; :::; �k)

0 is contained in a compact subset e� of
Rk�1.6

Assumption 3.5 : Let cijg = rig � rjg, where rig is an indicator that equals 1 if fYig; Xigg
is observed, and 0 otherwise; and rjg is an indicator that equals 1 if fYjg; Xjgg is observed,
and 0 otherwise. cijg is independent of (Y1g; X1g; Y2g; X2g; ::: ; YMg; XMg) for all g and

Pr [cijg > 0] > 0 for some (i; j) in each g:

Assumption 3.2 imposes stationarity in the distribution of the individual�s heterogene-

ity. Assumptions 3.2, 3.3 and 3.4 are regularity conditions needed for identi�cation of �.

6Notice that with this normalization, we de�ne quality of the students in terms of the unit of the char-
acteristic associated with the normalized coe¢ cient. For example, if we normalize the coe�cient associated
with household income, the quality of the student is de�ned in terms of income.
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Assumption 3.3(a) is a rank condition and assumption 3.3(b) guarantees that �Xij con-

tains a continuous element with a coe¢ cient that is di¤erent from zero. Assumption 3.4

is a normalization of �. Since H (:) is not speci�ed, the scale and location of � are not

identi�ed. To �x the location, we need to normalize one of the components of the vector �

to have an absolute value equal 1. Assumption 3.5 is necessary to deal with the fact that

we observe di¤erent numbers of individuals in each group, like an incomplete panel.

The rank estimator is based on a simple idea proposed by Han (1987), that the ob-

servations corresponding to each individual can be ranked against each other inside the

group. If X 0
ig� > X 0

jg�; then, by assumption 3.1, it is likely that Yig is bigger than Yjg.

This comparison will subtract o¤ the correlated e¤ects, since this e¤ect is the same for in-

dividuals in the same group. The parameter � will maximize the rank correlation between

Yi and Qi for individuals in group g, and identi�cation and estimation of � will be based

on the "within-group" variation.

In this paper, we use a smooth version of the traditional rank estimator proposed by

Horowitz (1992),

SN (b; �G) =
1

N

NX
g=1

MX
i=1

MX
j=i+1

cijg

�
[1 (Yig > Yjg)� 1 (Yig < Yjg)]K

�
�X 0

ijgb

�N

��
; (1)

where �N ! 0 (as N ! 1) and K (v) is a continuous function of the real line into itself
that converges to the indicator function as N !1; and satis�es:

K1 jK (v)j < C for some �nite C and all v in R

K2 limv!�1K (v) = 0 and limv!1K (v) = 1:

and M = max (Mg) and cijg is the indicator de�ned in assumption 3.57.

Theorem 3.1 Let assumptions A4.1-A4.5 hold. De�ne eb = (b2; :::; bk)
0 and � eXij =

(�Xij2; :::;�Xijk) :Let bN be a solution to

max
b:jb1j=1;eb2 eB SN (b; �N )

7This trick of using an indicator function to control the number of observations in each group is due to
Charlier, Melenberg and van Soest, 1995.
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then,

bN ! � almost surely.

To show strong consistency, we extend the proof of Theorem 2 in Abrevaya (2000).

The idea is to show that � is the limit maximizer of the non-smooth limit objective func-

tion. Then we can use the properties of K (:) to show that at the limit, SN (b) can be

approximated by SN (b; �G) :

3.2 Identi�cation of the ASF and Peer E¤ects

In the �rst step, we identi�ed �; so we could get Qig and Qg. From now on, we are going

to assume that student quality and peer quality are known. To identify the parameters of

interest, we need to impose additional assumptions.

Assumption 3.6 E
�
�gjQ1g; :::; QMgg;Wg; Ag

�
= E [�gjQg;Wg; Ag]

This last assumption holds if conditional on peer, school and classroom characteristics,

and on the vector of instruments, the correlated e¤ect is independent of individual char-

acteristics. This assumption says that the conditional distribution of the correlated e¤ects

only depends on the quality of the student in group g through a symmetric function of the

quality of the students in the group 8. This is a dimension reduction that is needed be-

cause our instrumental variable only varies at the group level. Assumption 3.6 is similar to

dimension reduction assumptions presented in panel data models. For example, Mundlak

uses a similar hypothesis to estimate a linear "random e¤ect" model. In this model, the

author assumes that �g is a linear function of Qig and a unobservable component, !ig; and

averaging this equation over i for a given g, the conditional expectation of �g is only func-

tion of Qg and !g. Altonji and Matzkin (2003) also use a dimension reduction assumption

to identify a local average response function in a nonseparable panel data model. They

assume that the conditional distribution of the unobservable component is exchangeable in

the covariates. In this case, the conditional distribution is invariant to permutations of the

covariates, and can be expressed as a function of exchangeable functions of the covariates,

for example the mean, the product, etc.
8First note that this assumption holds if �g ? QigjQg;Wg. Assumption 3.6 does not seem very re-

strictive. For example, in the case that Qg = 1
N

PMg

i=1Xig, it holds under the assumption that X 0
igs are

indepedent with normal distributions with the same mean and variance. In addition, �g is also normally
distributed, with Cov [�g; Xig] = a > 0 for all i:

14



Under assumptions 2.1, 2.3, 2.4 and 3.6,

E
�
YigjQig; :::; QMgg

�
= H (Qig; Qg) + E

�
�gjQig; :::; QMgg

�
= H (Qig; Qg) + � (vg;Wg)

Assumption 3.7 (Rank and Support Conditions) : For all the points in the support
of
�
Qig; :::; QMgg; Qg

�
, the support of (vg;Wg) conditional on

�
Qig; :::; QMgg; Qg

�
is equal

to the support of (vg;Wg).

This assumption guarantees that there is no functional relationship between the random

vector (Qig; Qg) and (vg;Wg) : Under this condition, as proved in Powell and Vella (1999),

we can identifyH (Qig; Qg) up to a constant. To be able to identify the level ofH (Qig; Qg) ;

we need to impose some location restriction on the distribution of �g and "ig: We assume

that E [�g] = E ["ig] = 0 (Assumption 2.3).

Assumption 3.8 : H (Qig; Qg) and � (vg;Wg) are continuously di¤erentiable.

Assumption 3.9 : Qg has a continuous distribution given (vg;Wg) :

These last two assumptions are necessary to identify the average marginal derivative

at a speci�c point.

Under assumptions 2.1, 2.3, 2.4, 3.6 and 3.7, and using the fact that E [�g] = 0, we can
identify the average production function, H (qi; q) :

Assumptions 3.8 and 3.9 guarantee that the derivative of the function that represents

student achievement, H (qi; Qg)+�+"i, is a well-de�ned object. Assumptions 3.6, 3.7 and

2.4 are also necessary for the identi�cation of this derivative. We can express the average

marginal derivative as an explicit function of the data distribution,
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�2 (qi) =

Z �
@ (H (qi; Qg) + �+ "i)

@Q

�
� f (�; ";Q) dm (") dm (�) dm (Q)

=

Z
@H (qi; Qg)

@Qg
� f ("j v;W;�;Q) f (�j v;W;Q) f (QjW; v)

f (v;W ) dm (") dm (�) dm (Q) dm (v;W )

+

Z
@�

@Qg
� f ("j v;W;�;Q) f (�j v;W;Q) f (QjW; v)

f (v;W ) dm (") dm (�) dm (Q) dm (v;W )

= E
�
@

@Qg
H (qi; Qg)

�
;

where the second equality follows by assumptions 2.3, 2.4 and 3.6. In addition, the object

in the last equality is well-de�ned by assumptions 3.8, 3.7 and 3.9.

Under assumptions 2.1, 2.3, 2.4, 3.6, 3.8 and 3.9, we can identify E
h
@(H(qi;Qg)+�g+"ig)

@Qg

i
.

4 Estimation

We propose a three step estimation procedure. In the �rst step, we estimate the vector

bN by �nding the global maximum of the function SN (b; �N ). With this vector bN , we

can construct the indexes for quality of each student and quality of his peer, bQig = X 0
igbN

and bQg = f
�
X1g; X2g; :::; XMgg

�0
bN . In the second step, we use a series estimator to

approximate 	(Ag;Wg), and construct the vector of residuals, bvg = bQg � b	(Ag;Wg) : In

the third step, we use a series estimator to approximate the conditional expectation of Y ,

E [Y jQig; Qg;Wg; Ag] = H (Qig; Qg) + � (vg;Wg), using bvg, bQig and bQg in the place of the
true values.

Since the function SN (b; �N ) has many local maximums, conventional algorithms tend

to fail in this case, since even when these algorithms converge, there is no guarantee that

they have found the global maximum, as opposed to the local maximum. To �nd the

global maximum of SN (b; �N ), we suggest a global search algorithm, called simulated

annealing. This algorithm is an iterative search procedure that moves in all directions,

avoiding the local maximums encountered during the interactions9. The advantage of this

9For a description of this algorithm, see Corana, Marchesi, Martini and Ridella (1987) and Go¤e, Ferrier
and Rogers (1994).
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algorithm is that it searches for the maximum on the entire surface of the function; it

optimizes the function while moving uphill and downhill, which allows it to escape from

local maximums and �nd the global maximum. Before doing this maximization, we need

to choose the smooth parameters in the function SN (b; �N ): the bandwidth (�N ) and the

kernel (K (:)). The kernel needs to be a bounded function that has limits equal to 0 or

1, but does not need to be a distribution function. Di¤erent kernels have been proposed

in the literature, depending on how much we want to smooth the function. The choice of

the bandwidth is less simple than the choice of the kernel, since there are no optimal rules

to choose bandwidths in the literature. Horowitz (1992) suggests a plug-in method. This

method chooses the bandwidth that minimizes the asymptotic mean square error of the

rank estimator. In the next section, we are going to derive the asymptotic theory for our

rank estimator and show how this plug-in method works.

In the second and third steps, we take b� as given, and estimate b	(Ag;Wg) and

�
� bQig; bQg;Wg; bvg� = H � bQig; bQg�+� (bvg;Wg) using a series estimator. The idea is to ap-

proximate each one of the functions by a series of independent variables, in such a way that

the number of terms in the series expands with the sample size. For the second step, de�ne

Zg �
�
A0g;W

0
g

�0, consider a positive integer L1, and let rL1 (Z) = (r1L1 (Z) ; :::; rL1L1 (Z))0
be a vector of approximating functions. In this case, b	(Ag;Wg) is the predicted value of

a regression of bQg on rg = rL1 (Z) ;
b	(z) = rL1 (z)0 b; b = (R0R)�1R0 (bq1; :::; bqN )0 ; R = [r1; :::; rN ]

0

The residuals from this regression are going to be used in the next step of the estimation

process, bvg = bQg � b	(Ag;Wg) :

In the last step, we de�ne PL (T ) = (p1L (T ) ; :::; pLL (T ))
0 as the vector of approxi-

mating functions of Tig = [Qig; Qg;Wg; vg] such that each term plL (T ) depends either on

(Qig; Qg) or on (vg;Wg), but not on both. Notice that we are imposing the additive struc-

ture stated in assumption 2.1 in this vector of approximating functions. In this case, an

estimator of H (Qig; Qg) can be constructed using the terms that depend only on (Qig; Qg),

and an estimator for � (vg;Wg) will be based on the terms that depend only on (vg;Wg).

To avoid small denominators in the OLS estimation due to outliers in t, we assume non-

random trimming of the group level variables10. De�ne Tg = (Qg;Wg; vg), the nonrandom

10Nonrandom trimming deletes the extreme observations, and moves the goalpost a little.
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trimming function is de�ned as

� (Tg) =
Qdt
j=11 faj < tgj < bjg ;

where aj , bj are �nite constants and tgj is the jth component of tg:

This trimming function � (Tg) allows us to exclude groups with large values of t that

can distort the results of a polynomial series estimator. In addition, it helps to deal with

denominators close to zero in the derivation of the asymptotic distribution of the estimators

We allow trimming at the group level. If we trim at the individual level, we are excluding

individuals from the group, but you are keeping the peer quality that we estimated in step

one. In this case, the interpretation of peer e¤ects changes. To avoid this problem, we trim

the variables at the group level.

Replacing the true values of (vg; Qig; Qg) by their estimated values obtained in the

previous steps, we obtain bTig = h bQig; bQg;Wg; bvgi , bTg = h bQg;Wg; bvgi and b�g = � �bTg� :We
also let rig be the indicator variable that equals 1 if fYi; Xig is observed in group g. As in
the previous step, �

�bTig� is the predicted value of a regression of Yig on bpig = pL �bTig�.
Using the observations with b�g = 1 and rig = 1,

b� �bt� = pL �bt�0 b� bP = [r11b�1bp11; :::rM1b�1bpM1; :::; r1Nb�N bp1N ; :::rMNb�N bpMN ]b� = � bP 0 bP��1 bP 0Y 0 Y = (r11Y11; :::rM1YM1; :::; r1NY1N ; :::rMNYMN ) :

By collecting the terms that depend only on
� bQig; bQg�, we construct the estimator of

the Average Structural Function. In addition, by taking the average of the derivative of

this function in relation to Qg, we estimate the peer e¤ects. Suppose p1l
�bt� = 1; and the

�rst Ll terms plL
�bt� depend only on � bQig; bQg� ; and the remaining terms depend only on

(Wg; bvg). In this case, the estimators can be constructed as
b�1 (qi; q) = bch + Ll+1X

j=2

b�jpj (qi; q)

b�2 (qi) = 1

N

PN
g=1

@
hPLl+1

j=2 b�jpj �qi; bQg�i
@Qg

Notice that in the second estimator, we average over g; the sample of groups. As noticed

by Newey, Powell and Vella (1999), �1 (qi; q) is de�ned up to a constant, since the �rst term
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in the polynomial (the constant) is a common term between H
� bQig; bQg� and � (bvg;Wg).

For example, in this case, the estimated value of � (bvg;Wg) is bc� +PLl+1
j=2 b�jpj (bvg;Wg),

where bc� + bch = b�1. To be able to separate bc� from bch, we need to impose another
restriction, �0 (v; w) = �11. In this case, we can choose bc� = � �

PL
j=Ll+2

b�jpj (v; w) ;
where � =

PN
g=1

PL
j=Ll+2

b�jpj(vg ;wg)
N and bch = b�1 � bc�:

In the estimation of �, we need to maximize SN (�N ; bN ) imposing the restriction that

the coe¢ cient associated with one of the continuous covariates is equal to one, which implies

that the scale of quality of the student is de�ned in terms of the student characteristic

associated with the normalized coe¢ cient. Depending on the variable that is normalized,

the estimated value of peer quality changes, and consequently b�2 (qi) changes. b�2 (qi) will
represent the marginal e¤ect of peer quality on student outcome in units of the variable

associated with the normalized coe¢ cient12.

5 Inference

In this section, we provide the asymptotic distribution of our estimators, and necessary

conditions for inference13. Since we propose a three step procedure to estimate the average

structural function and the peer e¤ects, the rate of convergence and standard error of these

estimators will depend on the asymptotic behavior of the rank estimator used in the �rst

step and the series estimator used in the other two steps. Before obtaining the asymptotic

theory for our estimator, we derive the asymptotic theory for our rank estimator and the

rates of convergence for the series estimators.

11For a better explanation of this condition, see Newey, Powell and Vella (1999).

12 b�2 (qi) will tell us if quality of the peers has a positive or a negative impact on the outcome of a given
student with quality qi; however the size of the the marginal e¤ect of peer quality on student outcome will
depend on which student characteristic has its coe¢ cient normalized to 1. In this sense, the size of this
estimator does not provide an accurate measure of the marginal e¤ect of peer quality. To have an idea of
peer e¤ects sizes, we could compare this estimator with a third one,

�3 = E
�
@H (Qi; Qg)

@Qi

�
;

where �3 represents the average marginal e¤ect of student�s quality on the outcome. �2
�3

will give us an
idea how the size of the marginal e¤ect of peer quality compares to the size of the marginal e¤ect of student
quality. Note that in this case, the expectatio is taken over the joint distribution of

�
qi1; :::; qMgN

�
.

13The proofs of all theorems in this part are in the technical appendix that is available upon request.
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5.1 Asymptotic Distribution: Rank Estimator

Horowitz (1992) derives the asymptotic distribution of the smooth maximum score esti-

mator for the case of a cross-sectional data set. Extension of the asymptotic results of

Horowitz for a smoothed maximum score estimator in the case of panel data is straight-

forward (see Charlier et al (1995), etc.). In this section, we extend the results of Horowitz

(1992) and Charlier et al (1995) to get the asymptotic properties of the rank estimators

proposed above. The key di¤erence is that the assumption on smoothness of the marginal

distribution of "ig used by Horowitz (1992) is going to be replaced by smoothness of the

joint distribution of the residuals.

The proofs of the theorems stated in this section are straightforward extensions of the

proofs in Horowitz (1992). To be able to derive the asymptotic distribution of our rank

estimator, we need to make the following assumptions:

Assumption 5.1 : The components of � eXij and of the matrices � eXij� eX 0
kl and � eXij� eX 0

ij�
eXkl� eX 0

kl

have �nite �rst absolute moments for all (i; j) ; (k; l) such that i < j and k < l.

Assumption 5.2 : logN
N�4N

! 0 as N !1

Assumption 5.3 : (a) K is twice di¤erentiable everywhere, jK0 (:)j and jK00 (:)j are uni-
formly bounded, and each of the following integrals over (�1;1) is �nite:

R
[K0 (v)]4 dv,R

[K00 (v)]2 dv;
R �
v2K00 (v)

�2 dv; (b) For some integers h � 2 and each integer s (0 � s � h),R
jvsK0 (v)j dv <1; and Z

vsK0 (v) dv =
�
0 if s < h
d 6= 0 if s = h

(c) For any integer s between 0 and h; any � > 0, and any sequence f�Ng converging to 0,

lim
N!1

�s�hN

Z
j�Nvj>�

��vsK0 (v)
�� dv = 0

lim
N!1

��1N

Z
j�Nvj>�

��K00 (v)
�� dv = 0

Assumption 5.4 : Let Zij � �X 0
ij� and f

�
Zij j� eXij� be the distribution of Zij con-

ditional on � eXij : For each integer 1 � s � h � 1; all Zij in a neighborhood of 0, almost
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every � eXij, and some C <1; f (s) �Zij j� eXij� � @sf(Zij j� eXij)
@Zsij

exists and is a continuous

function of Z satisfying
���f (s) �Zij j� eXij���� < C. In addition, ���f �Zij j� eXij���� < C for all

Z and almost every � eXij; and ���f �Zij ; Zlkj� eXij ;� eXkl���� < C for all (Zij ; Zkl) and almost
every

�
� eXij ;� eXkl� :

Assumption 5.5 Let L
�
Zij ;� eXij� � 1 � 2F"i�"j �Zij ;� eXij�.14 For each integer 1 �

s � h�1; all Z in a neighborhood of 0, almost every � eXij, and some C <1; F (s)"i�"j �Zij ;� eXij� �
@sF"i�"j (Zij ;�

eXij)
@Zs exists and is a continuous function of Zij satisfying

���F (s)"i�"j �Zij ;� eXij���� <
C.

Assumption 5.6 : e� is an interior point of eB
To �nd the asymptotic distribution of bN , Horowitz (1992) proposes a Taylor series

expansion of SN (bN , �N ) around �. Using the assumptions above, he can prove the exis-

tence of the matrices in this Taylor expansion and �nd the right rate of convergence. Under

assumption 5.4, SN (b) is twice di¤erentiable with respect to bb. De�ne
S1N (b; �N ) �

@SN (b; �N )

@eb
S2N (b; �N ) �

@2SN (b; �N )

@eb@eb0 :

Let bN �
�
b1N ;eb0N�0 denote the solution of the maximization problem of SN (bN , �N )

as N !1, with probability approaching 1, b1N = �1 = �1 and S1N (bN ; �N ) = 0. By the
mean value theorem, for b�N 2 (bN ; �)

S1N (bN ; �N ) = S1N (�; �N ) + S2N (b
�
N ; �N )

�ebN � e�� = 0:
Suppose that there is a real function � (N) such that � (N)S1N (bN ; �N ) converges in

distribution as N ! 1. Suppose that S2N (b�N ; �N ) converges to a nonsingular, nonsto-
14Notice that in this case, we need to change assumption 9 from Horowitz (1992), since H (:) is not a

linear function.
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chastic matrix S2. In this case,

0 = � (N)S1N (�; �N ) + S2N (b
�
N ; �N ) � (N)

�ebN � e��
� (N)

�ebN � e�� = �S�12 � (N)S1N (�; �N ) + op (1) :

Hence, � (N)
�ebN � e�� is distributed asymptotically as �S�12 � (N)S1N (�; �N ).

Assumption 5.7 : The matrix S2 is negative de�nite.

Theorem 5.1 Let assumptions 3.1-3.5 and 5.1-5.7 hold for some h � 2, and let fbNg be
a sequence of solutions to the following maximization problem

max
b:jb1j=1;eb2 eB SN (b; �N )

where

SN (b; �N ) =
1

N

NX
g=1

MX
i=1

MX
j=i+1

cijg

�
[1 (Yig > Yjg)� 1 (Yig < Yjg)]K

�
�X 0

ijgb

�N

��
:

By Theorem 3.1, bN1 ! �1 a.s.

(i) If N�2h+1N !1 as N !1; ��hN
�ebN � e��!p � (S2)�1 S1

(ii) If N�2h+1N has a �nite limit � as N !1,

(N�N )
1
2

�ebN � e��!d Nk�1
�
��

1
2S�12 S1; S

�1
2 DS�12

�
(iii) The optimal rate of convergence in distribution for the remaining parameters ebN is

obtained for �N =
�
�
N

� 1
2h+1 with 0 < � <1 (�xed). Then

N
h

2h+1

�ebN � e�� d�! Nk�1
�
� (��)

h
2h+1 S�12 S1; (�

�)�
1

2h+1 S�12 DS�12

�
;

22



where (k � 1) vector S1 and the (k � 1)X (k � 1) matrices D and S2 are de�ned by

S1 � �2
M�1X
i=1

MX
j=i+1

�S1
Ph
s=1

n
[s! (h� s)!]�1

� E
h
F (s)"i�"j

�
0j� eXij� f (h�s) �0j� eXij�� eXijioPr [cij = 1]

D �
M�1X
i=1

MX
j=i+1

�DE
h
L
�
0;� eXij�� eXij� eX 0

ijf
�
0j� eXij�iPr [cij = 1]

S2 � 2
M�1X
i=1

MX
j=i+1

E
h
� eXij� eX 0

ijF
(1)
"i�"j

�
0j� eXij� f �0j� eXij�iPr [cij = 1]

with

�S1 =

Z 1

�1
vhK0 (v) dv , �D =

Z 1

�1

�
K0 (v)

�2 dv:
Let 
 be any nonstochastic, positive semide�nite matrix such that S01S

�1
2 
S�12 S1 6= 0.

De�ne MSE = limN!1 E
�
N

2h
2h+1

�ebN � e��0
�ebN � e��� : Then for a given 
, the
MSE minimizing value for � is � = �� =

�
trace(S�12 
S�12 D)
2hS01S

�1
2 
S�12 S1

�
:

As in the case of the smoothed maximum score estimator, under assumptions 5.1-5.7,

the bias of our rank estimator is O
�
��hN

�
and the variance is O

�
(N�N )

�1
�
; and the fastest

rate of convergence is N� h
1+2h : This rate can be attained if the bandwidth is proportional

to N� 1
1+2h , �N / N� 1

1+2h . This rate of convergence is slower than
p
N . By using high

order kernels (choosing h large enough), this rate of convergence can be arbitrarily close

to
p
N . As argued in Horowitz (1992), for h = 1; the rate of convergence is N

1
3 ; and the

limit distribution is unknown. For h � 2, the limiting distribution of the estimator is given
by theorem 5.1. The asymptotic bias and a covariance matrix of the rank estimator can

be consistently estimated using the consistent estimators for S1; S2 and D as stated in the

next theorem.

Horowitz (1992) uses the consistent estimators of S1; S2 and D to �nd the optimal

bandwidth. The plug in method proposed by Horowitz (1992) is based on the results of

theorem 5.1. This theorem shows that the optimal bandwidth is given by ��N =
�
��

N

� 1
2h+1 ,

where �� minimizes the asymptotic mean square error. The plug-in method obtains the
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optimal bandwidth by getting a random sequence that consistently estimated ��: The

consistent estimator of �� is based on the consistent estimators of S1; S2 and D.

Theorem 5.2 Let ebN be a consistently smoothed maximum score estimator based on �N =
O
�
N� 1

2h+1

�
. For b 2 f�1; 1g X eB de�ned
s1ijg (b; �) = cijgK

0
�
�X 0

ijb

�

�
[1 (Yig > Yjg)� 1 (Yig < Yjg)]

�
�X 0

ij

�

�

Let ��N=O
�
N� �

2h+1

�
, where 0 < � < 1. Then,

(a) bS1N � (��N )�h S1N �ebN ; ��N� converges in probability to S1
(b) bDN �

�
�N
N

�PN
g=1

PMg�1
i=1

PMg

j=i+1 s
1
ijg

�ebN ; �N� s1ijg �ebN ; �N�0 converges in proba-
bility to D

(c) S2N (bN ; �N ) converges in probability to S2:

Theorem 5.1 states that if �N _ N� h
2h+1 ; the asymptotic bias of N

h
2h+1

�ebN � e�� is
� (��)

h
2h+1 S�12 S1. Using the results of Theorem 5.2, we can consistently estimate the

asymptotic bias of the estimator by � (��N )
h

2h+1 S2N bS1N ; and provide an asymptotically
unbiased rank estimator,

bbN = ebN + ��N
N

� h
2h+1

S2N

�ebN ; �N��1 bS1N
where �N =

�
trace(S�12N
S

�1
2N

bDN)
2hbS01NS�12N
S�12N bS1N

�
.

Another way to get an asymptotically unbiased estimator is to undersmooth. IfN�2h+1N !
0, when N ! 1, the rank estimator is asymptotically unbiased. If we set �N / N�$,

where$ > 1
2h+1 , then N�

2h+1
N ! 0. Horowitz (2002) shows that the errors in levels of t and

X2 tests for the smoothed maximum score estimator are larger with the bandwidth that

minimizes the rate of convergence of maximum score estimator than with undersmoothing.

As in nonparametric regression, the bandwidth that maximizes the rate of convergence

is not optimal for testing. The motivation for undersmoothing is that it is less danger-

ous when one is constructing a con�dence interval than when one is worried about point

estimation (Pagan and Ullah,1999).
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5.2 Convergence Rates: Series Estimator

The rates of convergence for the series estimators in step2 and 3 of the control function

approach were derived in Newey (1994) and Newey, Powell and Vella (1999). However,

in this section, the rates of convergence are going to di¤er from the ones found by these

authors, because we need to take into account the error that comes from the estimation in

the �rst step.

Using the results in Newey (1994) and Newey, Powell and Vella (1999), we can �nd the

mean-squared and uniform rates of convergence under the following assumptions.

Assumption 5.8 : Var [Y jX;Z] ;E [Yig; YjgjXig; Xjg; Zg] ;E [XigXjg] and E
h
kf (X1g; :::; XNgg)k2

���Zi
are bounded.

Assumption 5.9 : (i)For every L1 there is a nonsingular constant matrix B1 such that
RL1 (Z) = B1r

L1 (Z) ; (ii) the smallest eigenvalue of E
�
RL1 (Zi)R

L1 (Zi)
0� is bounded

away from zero uniformly in L1 ; (iii) there is a sequence of constants �0 (L1) satisfying

supZ2Z
RL1 (Z) � �0 (L1) ; (iv)For a vector of functions 	(Z) ; de�ne the vector of

partial derivatives @�	(Z) = @j�j	(Z)
@z

�1
1 :::@z�rr

and let j	jd = maxj�j�d supz2Z��@j�j	(Z)��. For any integer d � 0 there are #1, L1 such that
��	0 � rL10L1��d =

O
�
L�#11

�
as L1 !1.

Assumption 5.10 : De�ne T = ft : �g (t) = 1). (i) t (Q;Qg;W;	�Qg) is Lipschitz
in Q;Qg and 	; (ii) t (Q;Qg;W;	(A;W )�Qg) is continuously distributed with bounded
density in T , and T is contained in the interior of support of t; (iii) for every L there is

a singular constant matrix B such that PL (t) = BpL (t) ; (iv) the smallest eigenvalue of

E
�
� (t)PL (t)PL (t)0

�
is bounded away from zero uniformly in L; (v) for each nonnegative

integer d, there is �d (L) such that maxk�k�d supt2T
@j�jPL (t) � �d (L); (vi) there is #

and L such that
���0 � PL0L��d = O �L�#� :

Assumption 5.8 is a standard assumption in the literature about series estimators. It

assumes bounded second moments for Y andX. Assumptions 5.9 and 5.10 are important in

the derivation of the rates of convergence for our series estimator. Part (iii) of assumption

5.9 and part (v) of assumption 5.10 control the bias of the series estimators; and the other

assumptions deal with the magnitude of the series terms and the second moment of the

estimators.
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Theorem 5.3 If assumptions 5.8 and 5.9 hold with d = 0, and �0(L1)
2L1

N ! 0; thenZ h
	0 (z)� b	(z)i2 dF0 (Z) = Op� 1

N�N
+ �2hN +

L1
N
+ L�2#11

�
:

In addition, if assumptions 5.8 and 5.9 hold with d � 0 , and �0(L1)
2L1

N ! 0; then

���b	�	0���
d
= Op

0@�d (L1)
24 1p

N�N
+ �hN +

L
1
2
1

N
1
2

+ L�#11

351A :
This theorem gives the mean square and uniform rates of convergence for the function

estimated in the second step, b	(Ag;Wg). These rates are equal to the rate obtained by

Newey (1997), assuming that � is known
�
L1
N + L�2#11

�
; plus the rate for our rank estimator�

�2hN + 1
N�N

�
: Notice that L�2#11 and �2hN correspond to bias terms, and 1

N�N
and L1

N to

variance terms. If we choose L1 and h that make the rate of bias and variance equal, we

have L1 = N
1

1+2#1 and �N = N� 1
1+2h . In this case, the mean square of convergence is

given by Op

�
max

�
N
� 2#1
1+2#1 ; N� 2h

1+2h

��
: Notice that if #1 > h, the rate of convergence

of the rank estimator dominates, and in this case the rate is slower than the one found by

Newey (1997). If h > #1, the rate of convergence of the series estimator dominates and we

are back to the rate found by Newey (1997).

The next theorem provides the rate of convergence for the function estimated in the

third step, �
� bQig; bQg;Wg; bvg� = H � bQig; bQg�+ � (bvg;Wg).

Theorem 5.4 If assumptions 5.8 and 5.10 hold with d = 0; �0(L)
2L

N ! 0 and�
L
1
2M�1 (L) + �o (L)

2 �0 (L1)M
�"
�hN +

1p
N�N

+
L
1
2
1

N
1
2
+ L�#11

#
! 0; then

Z
� (t)

hb� (t)� �0 (t)i2 dF0 (w)
= Op

�
ML

N
+ML�2# +

ML1
N

+ML�2#11 +
M

N�N
+M�2hN

�
:

If assumptions 5.8 and 5.10 hold with d � 0, �0(L)
2L

N ! 0 and
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�
L
1
2M�1 (L) + �o (L)

2 �0 (L1)M
�"
�hN +

1p
N�N

+
L
1
2
1

N
1
2
+ L�#11

#
! 0; then

sup
T2T

���b� (t)� �0 (t)���
d

= Op

0@M 1
2 �d (L)

24 L 1
2

p
N
+ L�# +

L
1
2
1p
N
+ L�#11 +

1p
N�N

+ �hN

351A :
This theorem shows that the rate of convergence for b� (t) is equal to the sum of

three di¤erent rates: the rate we get for b� (t), assuming that we know Qig, Qg and vg;�
KM
N +MK�2��, the rate for the series estimator in step 2, assuming that we know �;�
ML
N +ML�2�1

�
; and the rate of our rank estimator,

�
M
N�N

+M�2hN

�
: This rate is di¤er-

ent from the one provided by Newey, Powell and Vella (1999) since we need to take into

account that some of the independent variables were estimated in step 1.

Similar to theorem 5.3,M�2hN , ML
�2#1
1 andML�2# correspond to bias terms, and LM

N ;
ML1
N and M

N�N
correspond to variance terms. If we choose L , L1 and �N that make the

bias and variance terms equal, we get L = N
1

1+2# ; L1 = N
1

1+2#1 and �N = N� 1
1+2h ; and

the rate of convergence is equal to Op

�
max

�
N� 2#

1+2# ; N
� 2#1
1+2#1 ; N� 2h

1+2h

��
. Notice that if

h < #1 and h < #, the rate of convergence of the rank estimator dominates, and the rate of

converge obtained in Theorem 5.4 is slower than the rate obtained by Newey, Powell and

Vella (1999). If h > #1 or h > #, the rate of convergence only di¤ers from the one obtained

by Newey, Powell and Vella (1999) by the presence of M. Recall that M = max (Mg), and

it is a �xed and small number, and does not a¤ect the rate of convergence.

5.3 Inference: ASF and Average Marginal Derivative

In this section, we show asymptotic normality for the average structural function and

the average marginal derivative of this function in relation to peer quality. In addition,

we show that these estimators are not root-N consistent, but the rate of convergence of

these estimators will depend on the rate of convergence of the rank estimator used in the

�rst step of the estimation procedure. We construct the standard error for the estimators

taking into account the errors that come from the �rst and second steps of the estimation

procedure. Our estimators are linear functions of b� (t), and we can extend the results of
Newey, Powell and Vella (1999) for asymptotic distributions of estimators that are a linear
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functionals of b� (t). Linearity implies that we can write both estimators as linear functions
of the Ordinary Least Squares coe¢ cient obtained in the third step of the estimation

procedure.

The estimator of the average structural function can be represented as

b�1 (qi; q) = bch + Ll+1X
j=2

b�jpj (qi; q)
=

LX
j=1

b�j � pj (qi; q; v; w)� LX
j=Ll+2

b�j � PN
g=1 Pj (vg; wg)

N

!

= a1
�
pL (t)

�0 b� = a1 �b� (t)� ;
where

a1
�
pL (t)

�
= pL (qi; q; v; w)�

� 0K+1x1PN
g=1 pj(vg ;wg)

N

�
:

The estimator of the peer average is the average marginal derivative of the student

outcome in relation to peer quality and can be represented as

b�2 (qi) = 1

N

PN
g=1

@
hPL

j=1 b�jpj �qi; bQg; wg; vg�i
@Qg

= a2

�
PL
�
qi; bQg��0 b�;

where

a2

�
PL
�
qi; bQg�� = 1

N

PN
g=1

@PL
�
qi; bQg; wg; vg�
@Qg

:

Since the average structural function is a linear combination of the OLS coe¢ cients

in the third step, we can use the Delta Method to �nd the asymptotic variance of this

estimator, bVb�1 = a1 �pL (t)�0 bVb�a1 �pL (t)� :
The estimator for peer e¤ects is also a linear combination of b�. However, the coe¢ cients

in this linear combination are functions of the rank estimator recovered in the �rst step,

since in this estimator we are estimating the distribution function of peer quality, and

the estimator of peer quality is a function of the rank estimator. For the estimator of
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the marginal derivative, we need to deal with the approximation of a2
�
PL
�
qi; bQg�� to

E
h
@PL(qi;Qg ;wg ;vg)

@Qg

i
before applying the Delta Method, and the variance term will account

for the fact that we are using an estimator for the marginal distribution of peer quality,

then

bVb�2 = a2 �PL �qi; bQg�� bVb�a2 �PL �qi; bQg��0 + a22 �PL (qi)� bVbbNa22 �PL (qi)�0
+ a2

�
PL
�
qi; bQg�� bV 1

2b� bV 1
2bbNa22

�
PL (qi)

�0
+ a22

�
PL (qi)

� bV 1
2b� bV 1

2bbNa2
�
PL
�
qi; bQg��0

where bVbbN is the variance of the rank estimator and
a22
�
PL (qi)

�
=
1

N

NX
g=1

@2PL
�
qi; bQg; wg; vg�0 b�
@Q2g

� f
�
X1g; X2g; :::; XMgg

�
:

Notice that both variance estimators, bVb�1and bVb�2 ; are functions of the variance of the
OLS estimator obtained in the third step, b�. To �nd the variance b�, we just do a Taylor
expansion of the �rst order condition used to obtain b�: This Taylor expansion allows us
to write b� � �0 as a linear combination of the rank estimator recovered in the �rst step
of the estimation procedure, and the OLS coe¢ cient obtained in the series estimation ofb	(Ag;Wg) : To obtain the asymptotic distribution of b�, we normalize the terms in the
expansion by the rate of convergence of the rank estimator, since this estimator converges

at a slower rate than residuals of the OLS estimation15. We can show that the variance of
15Another way to �nd the asymptotic distribution of b� � �0 is to normalize each term by its own rate

of convergence, and construct an adaptative estimator for the variance. This estimator of the variance is a
generalization of the estimator we proposed in this section, and it is subject of future research.
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p
N�N (b� � �0) is
bV 1
2b� =

24 1
N

NX
g=1

MX
i=1

rig�gP
L (tig)P

L (tig)
0

35�1 �
8<:
0@ 1

N

NX
g=1

MX
i=1

rig�ig
@�0 (tig)

@�
� PL (tig)

1A
+

0@ 1

N

NX
g=1

MX
i=1

rig�igP
L (tig) �

@�0 (tig)

@	
� rL1 (zg)

1A �
0@ 1

N

NX
g=1

MX
i=1

rL1 (zg) r
L1 (zg)

0

1A�1

�

0@ 1

N

NX
g=1

MX
i=1

rL1 (zg) f
�
x1g; x2g; :::; xMgg

�01A9=; � V 1
2bbN :

To state the results of asymptotic normality of the average structural function and the

estimator of peer e¤ects, we need to impose some regularity conditions. The �rst condition

assumes di¤erentiability of �0 (t). This condition assures that the derivatives of �0 (t)

can be approximated by PL (t), which is important for the consistency of terms in the

covariance matrices.

Assumption 5.11 �0 (t) is twice continuously di¤erentiable in t � (q; qg; wg;	� qg) with
bounded �rst and second derivatives.

The second condition restricts the rates of L1 and L, so the terms inside the covariance

matrix converge.

Assumption 5.12 � (L1) and �d (L) are bounded away from zero as L1 and L grow, andp
N�NL

�# ! 0 and
p
�NNL

�#1
1 ! 0

�(L1)
2L1

N�N
! 0 and �(L)2M2L

N ! 0

(L�1(L)2+�o(L)4�0(L1)2)�L21�L
N ! 0

(�(L1)4��1(L)2+L1�1(L)2)�L21
N ! 0

�0(L)
2��1(L)2�(L1�L+L21)

N�N
! 0:

Suppose that �N , L1 and L are chosen in order to make the rates of bias and variance

equal, �N / N� 1
2h+1 , L

1
1+2#1
1 and L

1
1+2# . In this case,

p
N�NL

�# ! 0 and
p
�NNL

�#1
1 ! 0

hold if h < # and h < #1. These two side conditions hold if the rate of convergence of the

rank estimator dominates the rate of convergence of the series estimator. These conditions

impose that the rate of the bias of the series estimator shrinks faster than 1p
N�N

, which
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is the rate of convergence of the variance of the rank estimator. Since we undersmooth,

N�2h+1N ! 0, or use the bias-corrected rank estimator, we don�t need to control for the bias

that comes from the �rst step. Given that, these conditions are very similar to the necessary

conditions stated by Newey, Powell and Vella (1999) to �nd the asymptotic distributions

of series estimators. Assumption 5.12 assures that the center of the limiting distribution

is at zero.

Theorem 5.5 If assumptions 3.1-3.5, 5.1-5.7, 5.8-5.10, 5.11

and 5.12 hold, and if N�2h+1N ! 0 or �N =
�
�
N

� 1
2h+1 and bbN = ebN+��NN � 1

2h+1
S2N

�ebN ; �N��1 bS1N ,
thenp

N�NV
1
2
�i

�b�i � �i0�! N (0; 1) and
p
N�N bV 1

2
�i

�b�i � �i0�! N (0; 1) for i = 1; 2;

where

V
1
2
�1
= a1

�
PL (t)

�0 � " MX
i=1

Pr [rig = 1] � E
�
�gP

L (ti)
0 PL (ti)

�#�1
�(

MX
i=1

Pr [rig = 1] � E
�
�ig
@�0 (tig)

@�
� PL (tig)

�

+

MX
i=1

Pr [rig = 1] � E
�
�igP

L (tig) �
@�0 (tig)

@	
� rL1 (Zg)

�
�E
�
rL1 (Zg)

0 rL1 (Zg)
��1 � E hf �X1g; X2g; :::; XMgg

�0
rL1 (Zg)

io
� V

1
2
bN

with a1
�
PL (t)

�
= pL (qi; q; v; w)�

� 0K+1x1PN
g=1 pj(vg;wg)

N

�
:
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8<:a2 �PL (qi)�0 �
 

MX
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Pr [rig = 1] � E
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0 PL (ti)

�!�1

�
"
MX
i=1

Pr [rig = 1] � E
�
�ig
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@�
� PL (tig)

�

+

MX
i=1

Pr [rig = 1] � E
�
�igP

L (tig) �
@�0 (tig)

@	
� rL1 (Zg)

�
�E
�
rL1 (Zg)

0 rL1 (Zg)
��1 � E hf �X1g; X2g; :::; XMgg

�0
rL1 (Zg)

ii
+E

�
@2�0 (tig)

@Q2g
� f
�
X1g; X2g; :::; XMgg

���
�V

1
2
bN

with a2
�
PL (qi)

�
= E

h
@PL(qi;Qg ;wg ;vg)

@Qg

i
:

Theorem 5.5 states the asymptotic normality that determines the large sample con�-

dence intervals for our estimators. In addition, this theorem shows that the estimators are

not root-N consistent, but the rate of convergence depends on rate of the rank estimator

and on how fast bV�i goes to in�nity. There is not a complete characterization of the con-
vergence rates of series estimators in the literature, although this theorem shows that our

estimators will converge at a slower rate than the standard series estimators that are linear

functionals of �0 (t) ; since we need to take into account the error that comes from the

rank estimator in the �rst step. To center the distribution at zero, we need to remove the

asymptotic bias of the rank estimator by undersmoothing or by using the bias-corrected

estimator.

6 Empirical Application

In Brazil, the low quality of the public schools and the high drop out rates are related

to poverty and high inequality rates. Some authors, Soares (2004) and Fletcher (1997),

argue that to be able to improve the educational system in Brazil and increase the level of

education it is necessary to understand which are the inputs in the production function of

education and what is the impact of each one on the average achievement of the students. In

the past, the analysis of the relationship between the inputs and outputs of the educational

process in Brazil was very restricted, since the only measure of achievement available was

the number of years of schooling completed by the student. This measure does not include
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any information about the quality of the education obtained by the student, and does not

allow comparisons among students that have the same number of years of schooling.

With the establishment of a new educational policies in the early 1990�s, evaluation

systems were created for the di¤erent levels of education: SAEB, for those �nishing el-

ementary schools, middle school or high school, and the Undergraduate National Exam,

for those �nishing college. Since the implementation of these evaluation systems, many

researchers have been investigating the impact of di¤erent inputs (student characteristics,

school infrastructure, teacher experience, teacher education, etc.) on student test scores.

Using SAEB (2005), Fletcher (1997) uses a linear hierarchical model to determine which

factors a¤ect the math pro�ciency of students in the last year of middle school. This au-

thor �nds that race, sex and the socioeconomic level16 of the students have a signi�cant

impact on math pro�ciency. In addition, he �nds that the average of the socioeconomic

index in the classroom has the largest impact on student pro�ciency. Albernaz, Ferreira

and Franco (2002) estimate the production function of education in Brazil for students in

the last year of middle school using SAEB 1999. Using a linear hierarchical model, they

�nd that the average of the socioeconomic index in the classroom is responsible for most of

the variance in math test scores among classrooms. They also �nd evidence that in class-

rooms with a high average socioeconomic index, the e¤ect of student�s own socioeconomic

index is smaller than in classrooms with a low average index. Using SAEB 2001, Franco

et al (2004) �nd evidence that the average of the socioeconomic index in the classroom

increases math test scores for students in the last year of elementary school by 5 points on

average, and decreases by 3 points the coe¢ cient associated with the socioeconomic index

of the student. They �nd that students with a high socioeconomic index bene�t more

from "good" classrooms than students with a low index. "Good" classrooms are de�ned

as the ones in which teachers assign and grade homework, and with a low percentage of

students that are repeating the same grade. In Brazil, peer�s characteristics seem to be an

important input into the production function.

In addition to the evaluation systems, other policies were proposed in the early 90�s.

The Law of the Basis of National Education ("Lei de Diretrizes e Bases da Educação

National" - LDB) established in 1996 and the National Plan of Education ("Plano Nacional

16Since the data provided by SAEB does not have a measure of household income, they construct a
measure of socioeconomic status of the students that is used as one of the student characteristics in the
production function for education. This measure is an aggregated index that includes access to some
consumer durable goods, like television, radio, telephone, computers, etc..
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de Educação - PNE) established in 2001 changed the allocation system for educational

resources and proposed new policies to guarantee high quality education for all kids between

6 and 14 years old in Brazil. According to the LDB, federal government is responsible not

only for evaluating the education provided by private and public schools and colleges,

but also for implementing a curriculum reformulation. State governments are responsible

for regulating and controlling schools that o¤er basic education, including private ones.

The state government is responsible for transferring educational resources to schools, and

for establishing mechanisms to ensure that these resources are used properly. Decisions

related to pedagogical, administrative and �nancial matters are made at the school level.

The Principal, with the community17, has autonomy to decide how to allocate resources to

classrooms, including �nancial resources, textbooks, teachers and students. In this section,

we model this decision problem at the school level.

In a previous decision problem, the parents decide which schools their kids can attend

based on the characteristics of the schools (Xs) and costs (like the distance of the school

from the house, tuition in the case of private schools, etc.). Based on the supply of students,

the school selects which individuals are going to attend its classes. We assume that the

school chooses an admission rule that maximizes the total quality of the students in the

school. Examples of admission rules are: select students that live in the neighborhood,

admission exam, etc. Let N be the total number of classrooms in the school, and Mg the

number of students in classroom (group) g. The total quality of the students in the school

is equal to the sum of the quality index for all students in the school, Qs =
PN
g=1

PMg

i=1Qi:

The total quality of the students in school is determined in this previous decision problem

and is a function of school characteristics (Xs) and the admission rule chosen by the school

(As), Qs � Q (As; Xs)
Given the total quality of the students in the school, the Principal, with the community,

allocates resources and students to classrooms. For simplicity, we assume that the school

only has students in the last year of elementary school, and the size of the classrooms is

�xed. Each classroom has the same number of students, which is equal to the total number

17Community is de�ned as teachers, sta¤ and some parents that participate in school activities. The
Principal can create a council to make decisions, or he can decide by himself and get the approval of
the community. Some decisions are made by the Principal himself, or by the Principal and teachers, like
decisions on pedagogical programs and how to allocate students and teachers to classrooms. The majority
of the decisions at the school level are made by the Principal and the community. For simplity, we are going
to describe the decision problem, we are going to refer as the main agent in the decision problem as "the
school".
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of students in the school (T ) divided by number of classrooms, Mg =
T
N . We assume that

the school chooses the allocation rule that maximizes the total achievement of the students

subject to �nancial constraints and the education production function, represented by

H (:). This production function relates student�s achievement with student�s quality and

peer�s quality. The school solves the following decision problem

max
Ag ;At;Bg

NX
g=1

MgX
i=1

E [Yigj qig; qg; vg; bg; tg;Mg; Xs; Ag]

subject to

Yig = H (Qig; Qg) + �g + "ig

Qg � Qg (Ag; f (Qi (As; Xs)))

tg � tg (At; f (Xt))
NX
g=1

w (tg) +

NX
g=1

PBBg = R

where Bg is the total of material received by classroom g (including textbooks, teaching

material, etc), tg is the quality of the teacher in group g, which is a function of the way

teachers are allocated to classrooms (At) and the distribution of teacher characteristics in

the school (Xt), w (tg) is the salary of the teacher, R is the total amount of money that

the school can spend, Ag represents the allocation rule that assigns students to classrooms,

f (Qi (As; Xs)) represents the distribution of student quality in the school, which is a

function of total quality of the students in the school, Qg represents the average quality

of the students in classroom g; Qig is the quality of individual i in group g; and Yig, the

achievement of student i in group g. There are three unobservable components in this

model, �g, "ig and vg. In this case, �g and "ig represent the correlated e¤ects and the

individual heterogeneity in the production function of achievement, and vg represents a

noisy signal of the correlated e¤ects �g.

According to this decision problem, the school maximizes the total achievement of the

students in the school by choosing the teacher, the quantity of material, and group com-

position in each classroom. The quality of the teacher and the average of the quality of the

students in the classroom is determined by the allocation rules chosen by the school. By

choosing the student and teacher allocation rules, the school determines Qg and tg. One
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important assumption of this model is that conditional on school and classroom character-

istics, the student allocation rule only a¤ects total achievement through its e¤ect on the

quality of the peers.

The solution of this model leads to the triangular system of equations used in this

application,

Yig = H (Qig; Qg) + �g + "ig for i = 1; :::;Mg and g = 1; :::; N (2)

Qg = 	(Ag;Wg) + vg for g = 1; :::; N (3)

where

(i) E
�
"igjQ1g; :::; QMgg; �g

�
= 0

(ii) E [vgjAg;Wg] = 0

(iii) E [�gj vg; Ag;Wg] = E [�gj vg;Wg] = � (vg;Wg) :

In this system of equations, the vector Wg = [Xs; Xt;Mg; As; At; Bg] includes school

characteristics, classroom characteristics (including teacher characteristics), the admis-

sion rule and teacher allocation rule. If this applied exercise, f
�
X1g; X2g; :::; XMgg

�
=

1
N

PMg

i=1Xi:

Notice that the assumption that E [�gj vg; Ag;Wg] = E [�gj vg;Wg] holds if controlling

for school and classroom characteristics and the other allocation rules, �g varies indepen-

dently of the way students are allocated to classrooms. Conditional on the characteristics

of the groups and the other allocation rules, all the productivity e¤ects of student allocation

operate through their e¤ect on peer composition. This exclusion restriction can be violated

in many situations. Suppose that there is an input that the Principal can observe, but the

econometrician does not know about, like a measure of teacher quality, and this input is

correlated with the way students were allocated to classrooms. In this case, even when we

control for the characteristics of schools and classrooms, the student allocation rule will be

correlated with �g, and the exclusion restriction will be violated. Or suppose that there

is an unobservable political process (for example parent�s pressuring the school to select

some allocation rule) that a¤ects the decision made by the school, but does not have a clear

relationship with school and classroom characteristics. As before, the exclusion restriction

will be violated. In this model, we assume that the assignment of students is determined

entirely by the allocation rule that is known by the econometrician.

36



This very simple decision problem deals with the main source of selection bias presented

in models that estimate peer e¤ects in classrooms, non-random assignment of the students

to classroom, by assuming that the assignment of students to classrooms is only determined

by the allocation rule chosen by the school, and that this allocation rule is chosen based

on the observable characteristics of the school, teachers and students in this school. We

investigate the validity of our exclusion restriction in section 6.3. For now, we assume that

exclusion restriction is valid for public and private schools in Brazil.

6.1 Description of the Data: SAEB 2003

The Brazilian National Evaluation System of Basic Education (SAEB) is a biannual sur-

vey conducted by the National Institute for Educational Studies and Research (INEP).

SAEB evaluates students in the last year of each education level (elementary school, mid-

dle school and high school) in two subjects: Portuguese and math. In this survey, students

not only take standard exams in Portuguese and math, but also �ll a questionnaire that con-

tains information about their socioeconomic status, behavior towards learning and parent

participation in the educational process. Teachers and Principals also answer contextual

questionnaires on teaching practices, management and socioeconomic background. In ad-

dition, this survey collects information about the infrastructure in the school, for example,

availability of textbooks to the students, if the classrooms have air circulation and enough

light, etc.

In this applied exercise, we are going to use data from SAEB 2003. SAEB collects

information from a sample of students in urban school in all states in Brazil. In 2003,

students in the last year of elementary schools in rural schools with more than 10 students

in this grade were added to the SAEB sample.

One interesting aspect about the SAEB 2003 is that it includes information on how

students and teachers are allocated to classrooms, which is important data in the analysis

of peer e¤ects. In addition, it has information regarding admission rules used by the

Principal to select the students that are going to attend the school. However, this data

does not include an important characteristic of students� family backgrounds, household

income. To deal with this lack of information, we follow the literature and construct an

aggregate index that represents the socioeconomic index of the students. This aggregate

index is created by a Principal Component Analysis of twelve items in the questionnaire.

These items are related to the existence of some consumer durable goods in the household
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and to the infrastructure of the household. A detailed description of this index can be

found in Appendix A.

In this application, we focus on math test scores for students in the last year of elemen-

tary school. We focus on students in the last year of elementary school because peer e¤ects

are usually stronger in classrooms in elementary school than in classrooms in high school.

The size of classrooms in elementary school is usually smaller than in high school, and kids

less than 10 years old do not have a network outside the classroom; they largely interact

with their classmates, teachers and their parents. Since students learn Portuguese not only

at school, but also at home through reading habits, talks with their parents, etc., there

may be some unobservable components at the individual level that a¤ect Portuguese test

scores, but not math test scores. To avoid dealing with the impact of these unobservable

components on student achievement, we focus on math test scores.

The sample used in this application has 20,137 students allocated in 2,687 classrooms

in 2,117 schools. The math test scores for the students will be the measure of achievement

for students in their last year of elementary school. We use sex, age, race, parent education,

the socioeconomic index and a measure of student background in school as student�s char-

acteristics. The vector X includes a dummy variable that equals 1 for females; a variable

for age which is a discrete variable that varies from 8 until 15; a dummy that equals 1 if the

student is white; an aggregate index that represents the socioeconomic level of the student;

a variable for parent schooling which is a discrete variable that represents the number of

years of schooling for the parent with the most education; and a dummy that equals 1 if

the student attended kindergarten18.

The vector of controls (W ) includes school and classroom characteristics. We consider

the following school and classroom characteristics: location (region in Brazil, and rural or

urban areas), type of school (dummy variable that equals 1 for private, and 0 for public

schools), characteristics of the teachers in each classroom (years of schooling, experience

(measured by the number of years as a teacher), gender and race), homework assignment

(dummy variable that equals 0 if the teacher does not assign homework, 1 if the teacher

18 In a previous version of this paper, we include parent attendance at school meetings as a student
characteristic. However, this variable does not have a sign�cant impact on student achievement, and we
decide to exclude it from the analysis. In the vector X, we use the maximum years of schooling between
the father and mother as the measure of parent education because of the great number of missing values in
the variables that de�ne education of the mother and the education of the father. Parental education is a
dicrete variable. Suppose that E indicates years of schooling. In this case,
E = max (Emother; Efather) and equals 1 if E = 0; 2 if E < 4; 3 if E = 4, 4 if 4 < E < 8;5 if E = 8, 6 if

8 < E < 11, 7 if E = 11;8 if 12 < E < 16; 9: E � 16.
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assigns homework, but does not grade it, and 2 if the teacher assigns and grades the home-

work), total number of students in the classroom, the principal�s characteristics (education,

experience (measured by the number of years as a principal in the school), age, race and

gender), a variable that measures if the classrooms have light and air circulation, and a

variable that equals 1 if the classroom has the materials necessary for teaching (eraser,

chalk, etc.).

We also add to this vector the admission rule and teacher allocation rule chosen by

the school. According to SAEB, the school can select students using �ve criterion: an

admission exam, lottery, proximity of student house to school, �rst come �rst served, and

other criterion. In this data, 4:34% of the schools use an admission exam, 1:13% use lottery,

22:48% choose their students based on neighborhood, 23:25% give the spots to the �rst

students in line, 13:22% select the students using another criterion and 35:59% have no

criterion to select the students19. The school can allocate teachers to classrooms based

on seven criterion: respect the preferences of the teachers, more experienced teachers are

assigned to students that learn faster, more experienced teachers are assigned to students

that learn slower, keep the same teacher with the same classroom, switch teachers among

grades, hold a lottery or use another criterion. 23:11% of schools in the sample respect the

preference of the teachers, 20:08% switch teachers among grades and 10:5% do not have a

speci�c way to allocate teachers to classrooms.

Following the simple model presented in the previous section, the vector of instruments

(Ag) will contain dummy variables that will represent how the school allocates students

to classrooms. There are four ways that the school can assign students to classrooms20:

integration by age, segregation by age, integration by score, segregation by score. In the

data, 42:30% of the schools use integration by age, 8:28% of the schools use integration by

score, 8:99% of the schools use segregation by age, 15:84% use segregation by score and

24:59% have no assigned rule. It�s interesting to note that the percentage of private schools

that adopt each one of the allocation rules is the same as the percentage of public schools.

Table 1 presents the summary statistics of some of variables used in this applied exercise.

Figure 1 shows the distribution of the math test scores in this data. The standard test

was designed in such a way that the average student in the last year of elementary school

19 It is interesting to note that 54% of the rural schools do not adopt any criterion to select the students,
and 39% of the private schools. In addition, there are no private schools in the sample that use the lottery
criterion.
20The survey asked the Principal if he used one of this 4 options and if he has no assigned rule.

39



should have a score of 250. This graph shows that the distribution of test scores is shifted

to the left, with few students with test scores above 250. Test scores vary from 72 to 369,

and the average test score is 193.

Figure 2 shows how test scores vary with student characteristics (sex, race, parent�s

education, and if the student attended kindergarten). This graph shows that males and

whites have higher math test scores on average than females and non-whites. In addition,

students that attended kindergarten or have parents with a college degree have a higher

achievement on average than other students.

Figure 3 shows how test scores vary with some school characteristics (location, and if

it is public or private). This graph shows a huge gap between test scores in public and

private schools. This result was expected since private schools concentrate students with a

"good" family background, and we have evidence that the characteristics of a student�s peer

group impact the achievement of the student. In this case, "good" family background is

measure by higher household income and parents�education. In addition, Figure 3 shows

that test scores vary by the location of schools. Students in the Southeast region have

higher test scores than students in other regions, and students in urban areas have higher

test scores than students in rural areas. There is evidence that the quality of teachers and

the infrastructure are better in urban areas than in rural areas, which can explain part of

the di¤erence in average test scores among areas in Brazil.

Figure 4 shows how test scores vary with the admission and teacher allocation rules.

The schools that choose their students based on an exam have the best test scores. This

graph also shows that schools that keep the same teacher with the same classroom have

students with higher test scores on average than other schools. Figure 5 shows how test

scores vary with the student allocation rule. The schools that segregate students by score

among classrooms have better student achievement than the others.

In the next section, we use the data described in this section to estimate the average

production function and peer e¤ects.

6.2 Results

In this section, we estimate the average production function and the average marginal

derivative using the new semiparametric procedure described in section 4. The results

obtained using this methodology are compared with the results of a linear-in-means model.
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6.2.1 Baseline Model: linear-in-means

In this section, we estimate the linear-in-means model using a three step procedure. In this

model, the production function is linear in both quality of students and peers. We assume

that the function that relates peer quality with student allocation rule is also linear, and

that the control function is a linear function of the unobservable component of peer quality

(vg) and of the vector of school and classroom characteristics (Wg). Thus,

Yig = H (Qig; Qg) + �g + "ig = �0 +Qig + �1Qg + �g + "ig (4)

Qg = 	(Ag;Wg) = 0 + 
0
1Ag + 

0
2Wg + vg (5)

� (vg;Wg) = �2vg + �
0
3Wg (6)

with Qig = X 0
ig� and Qg = X

0
g�:

The parameter that identi�es peer e¤ects is �1: As in the semiparametric model, �1
represents the marginal e¤ect of student quality on student achievement. The average

production function is just the linear function, H (Qig; Qg) = �0 +Qig + �1Qg, evaluated

at speci�c values of peer and student quality.

The parameters of this model are identi�ed and estimated using a three step procedure.

In the �rst step, we use the within-group variation to identify and estimate �. In this

step, we construct the "within variation" version of equation 4 by subtracting the average

achievement in each classroom, Y g =
PN
g=1 Yig
N =

PN
g=1H(Qig ;Qg ;�g ;"ig)

N ;

Yig � Y g = �0
�
Xig �Xg

�
+ "ig � "g: (7)

Equation 7 does not include the correlated e¤ect (�g), and we can identify � using

the assumption that E
�
"igjQ1g; :::; QMgg; �g

�
= 0: This equation is estimated by Ordinary

Least Squares. In this step, we estimate b�, and recover the indexes that represent quality
of the student and quality of his peers, Qig = X 0

ig
b� and Qg = X 0

g
b�:

To identity the other parameters in this linear-in-means model, we use the between-

group variation. To deal with the endogeneity of Qg, we use the control function approach

proposed by Newey, Powell and Vella (1999). In the last two steps, we identify the para-

meters in equations 5 and 6 based on the following assumptions: E [vgjAg;Wg] = 0 and

E [�gj vg; Ag;Wg] = E [�gj vg;Wg] = � (vg;Wg) : In the second step, we estimate equation

5 by Ordinary Least Squares, using the peer quality estimated in the �rst step, bQg. In this
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step, we recover the residuals of the OLS regression, bvg. In the last step, we use bQg and bvg
obtained in �rst and second steps to estimate the following equation by OLS,

Y g = �0 + (1� �1) bQg + �2bvg + �03Wg + 'g:

In the last step, we obtain the estimated value of peer e¤ects, b�1, and the other coef-
�cients in the average production function. The standard deviation of these coe¢ cients is

obtained using a GMM approach.

Table 2 presents the results of the �rst step. This table shows that all the coe¢ cients,

except for the socioeconomic index, have a signi�cant impact on student test scores. The

sign of the coe¢ cients are the same as the ones found in the literature that estimate linear

models using SAEB. Males and whites have higher math test scores on average than females

and nonwhites, and parent education and kindergarten attendance have a positive impact

on student outcome. Table 4 presents the results for the second and third steps of this

parametric procedure. The �rst column of this table shows that the student allocation rules

have a signi�cant impact on peer quality, which indicates that there is a strong relationship

between the allocation system and peer quality. The coe¢ cients of the allocation rules are

positive. Since the exclusion category is allocation based on segregation by age, these

results indicate that the schools that integrate by age or allocate students based on score

have better peer groups on average than the schools that segregate by age. The second

column of table 4 shows the results obtained in the third step of the estimation procedure.

This result indicates that peer quality has a positive e¤ect on student achievement, but

this e¤ect is not signi�cant. One of the limitations of this baseline model is that it does not

allow peer e¤ects to vary with peer quality. It may be the case that high quality students

bene�t more from an increase in peer quality than a student with low quality, or vice

versa. The results of the semiparametric model presented in the next section will address

this point.

6.2.2 Flexible Functional Form

In the semiparametric model, we estimate the average production function and peer ef-

fects without imposing a functional form for the production function (H (Qig; Qg)). We

estimate the triangular system of equations represented by equations 2 and 3, using the

semiparametric methodology described in section 4.

In the �rst step of this procedure, we estimate the parameters in the index that de�nes
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student quality (�), by �nding the global maximum of the function, SN (b; �N ). Since this

function has many local maximums, we use a global search algorithm, called simulated

annealing, to maximize the function SN (b; �N ). This function has two smooth parameters

as arguments: kernel (K (:)) and the bandwidth (�N ). In this applied exercise, we use a

fourth order kernel (h = 4)21. The bandwidth is selected using the plug-in method proposed

by Horowitz (1992). This method chooses the bandwidth that minimizes the asymptotic

mean square error of the rank estimator. We are going to refer to this bandwidth as the

optimal (��N ). With this bandwidth, we can calculate the asymptotically bias-corrected

rank estimator. In addition, we consider two other values for the bandwidth, half of the

optimal bandwidth (0:5 � ��N ) and 75% of this optimal bandwidth (0:75 � ��N ). When we
use these two di¤erent bandwidths, we are undersmoothing, and the asymptotic bias of the

estimator goes to zero. In order to satisfy assumptions (vii) and (viii), we normalize the

coe¢ cient associated with the socioeconomic index to 1. This random variable is the only

one that attains more than �ve discrete values, being close to be continuously distributed

with a positive measure over the entire support. Notice that with this normalization, the

quality index is de�ned in the units of the socioeconomic index, since we are normalizing

all the coe¢ cients in the index by the coe¢ cient associated with socioeconomic index. The

magnitude of the index that estimates peer quality will change depending on which coe¢ -

cient has been normalized, thus the magnitude of peer e¤ects will change. The magnitude

of the peer e¤ects represents the marginal e¤ect of peer quality on student achievement

in units of the socioeconomic index. In this optimization, we use 103; 667 combinations of

(yig; yjg) for i 6= j:
Table 2 shows the values for the asymptotically bias-correct rank estimator, and the

values obtained using the other two bandwidths, 0:5 � ��N and 0:75 � ��N . In all the three
cases, the coe¢ cients have the same signs as in the parametric case. Age and female

have a negative impact on test scores, while white, parent schooling and kindergarten

attendance have a positive impact on student achievement. In the estimation with the

optimal bandwidth, all the coe¢ cients are signi�cant. However, when we undersmooth,

the standard deviation of the coe¢ cients increases. Using 0:75 � ��N as the bandwidth, we

21We use the integral of fourth order kernel for nonparametric estimation proposed by Muller (1984),

K4 (v) =

8<:
0 if v < �1�

105
64

� �
1� 5v2 � 7v5 � 3v7

�
if � 1 � v � 1

1 if v > 1
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get coe¢ cients with large sizes, but standard deviations that are not very di¤erent from the

ones obtained using the optimal bandwidth. When we decrease the bandwidth to 0:5 ���N ,
the sizes of the coe¢ cients decrease, getting close the values of the asymptotically unbiased

estimator, but the variance explodes. Since in this applied exercise we are interested in

point estimation, we use the results obtained using the optimal bandwidth.

Notice that the coe¢ cients in the parametric case are similar to the ones obtained

with the optimal bandwidth. Table 3 compares the estimated values obtained for student

quality and peer quality in the parametric and semiparametric cases. This table shows that

the maximum value and the median of the quality distribution is almost the same in the

parametric and semiparametric cases. However, the values obtained in the parametric case

have higher standard deviations and higher minimums than in the nonparametric case. It

appears that in the parametric case, we obtain more negative values for quality. In both

cases, the mean and median of the quality distribution is negative, which indicates that a

large part of the distribution of student quality is concentrated in the negative part of its

support.

In the second and third steps of the estimation procedure, we use series approximation

to estimate the conditional expectation of peer quality and the conditional expectation of

the outcome. In this applied exercise, we use polynomial approximation functions. Let

� = (�1; ::; �d1) be a vector of nonnegative integers and Z
� �

Qd1
j=1Z

�j
j . For a sequence

(� (l1))
1
l1=1

of vectors with the same dimension as Z, a power series approximation in the

second step is

rL1 (Z) =
�
Z�(1); :::; Z�(L1)

�0
:

Analogously, to de�ne a power series approximation in the third step, let (� (l))1l=1
denote a sequence of vectors with the same dimension as T , such that for each l, T�(l)

depends only on (Qig; Qg) or on (vg;Wg), but not on both. In this case, the power series

approximation in the third step is

pL (T ) =
�
T�(1); :::; T�(L)

�0
:

In both steps, we use orthogonal polynomials. We just replace Z�(:) and T�(:) by a

product of univariate polynomials with the same order. These univariate polynomials are

orthogonal22. As pointed out by Newey, Powell and Vella (1999), orthogonal polynomials

22 In this estimation, we use the simplest orthogonal polynomials in the interval [�1; 1], Legendre Poly-
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may reduce colinearity. To use orthogonal polynomials, we need to normalize our variables

to have values between �1 and 1. With this normalization, students with a good back-
ground will have quality close to 1, and values at the bottom of the distribution of quality

will be around �1:
In the third step, we use nonrandom trimming to deal with outliers. We exclude from

our samples classrooms with a very low quality or very high quality. We restrict our sample

to classrooms with quality between -0.2 and 0.8. This restricted sample corresponds to

99% of the classrooms in the original sample. In the new sample, we have 18,981 students

allocated among 2,662 classrooms.

The number of nonlinear terms in the polynomials is chosen by standard least squares

cross-validation23. We �rst choose the number of terms that will approximate 	(Ag;Wg).

Then, we get the residuals of the model estimated in the second step, and choose the

number of terms in the polynomial series approximation of �
�bt� by cross-validation, using

the vector (bqig; bqg; wg; bvg) as the vector of independent variables. A third order polynomial
minimizes the CV criterion for the second step, and a polynomial of order four minimizes

the CV criterion for the third step.

Using the results obtained in the series approximation of 	(Ag;Wg) and �
�bt�, we

obtain the estimated average production function and the peer e¤ects. Figure 6 plots the

average production function against peer quality and student quality. This graph shows

that test scores are monotonically increasing with student quality for students with quality

greater than or equal to -0.5. However, tests scores do not have a monotonic relationship

with peer quality. This graph indicates that test scores decrease with peer quality for

students with very low quality, but increase with peer quality for students with quality

above 0.2. To gain a better understanding of the relationship between test scores and peer

nomial. The components of a univariate legendre polynomial are: P0 (x) = 1; P1 (x) = x; P2 (x) = 3x2�1
2

;

P3 (x) =
5x3�3x

2
; P4 (x) =

35x4�30x2+3
8

; P5 (x) =
65x5�70x3+15x

8
; P6 (x) =

231x6�315x4+105x2�5
16

. To use these
orthogonal polynomials, we need to normalize our independent variables in such a way that they have values
between [�1; 1] : We do that by applying the following normalization,

x� =
2x� a� b
b� a

where x 2 [a; b] and x� 2 [�1; 1].
23 In this case, we choose L1 and L that minimize the estimated sum of the predicted error squared,PN
g=1(	(zg)�b	�g(zg))2

N
and

PN
g=1

PMg
i=1(�(bti)�b��i(bti))2

N
. We include one component of the polynomial each

time, and calculate the predicted error. We include as many terms as possible until we have a rank de¢ cient
matrix of covariates and cannot �t the model by OLS. For the values found in the cross validation procedure,
contact the author.

45



quality, we �x the quality of the students at three di¤erent levels. One level represents

a high quality student and is equal to the upper quartile of the distribution of student

quality, another characterizes a low quality student and is equal to the lower quartile of

the distribution of student quality, and a third represents the average student and is equal

to the mean of the quality distribution24. Figure 7 shows the average production function

at these three values of student quality, and includes con�dence intervals. This �gure shows

that test scores do not vary much with peer quality. For a low quality student, test scores

decrease with peer quality. However, this negative slope is not signi�cant. For an average

student, test scores increase with peer quality, however the e¤ect of peer quality on student

outcome is small. For a high quality student, test scores decrease with peer quality for

groups with quality lower than 0.5, but increase with peer quality in high quality groups.

In Figure 8, we �x peer quality at three levels, and analyze how test scores vary with

student quality. As in �gure 7, we �x peer quality at three levels: at the upper quartile, at

the lower quartile and at the mean of the distribution of quality25. This �gure shows that

tests scores are monotonically increasing with student quality for students with quality

above -0.6, and this relationship does not change with peer quality. Figure 9 plots peer

e¤ects against student quality. This graph shows that peer e¤ects are positive for students

with quality greater than -0.4, and increase with student quality for students with quality

lower than 0.7. For students with quality larger than 0.7, peer e¤ects decrease with student

quality, however this descending slope is not signi�cant. This graph indicates that the

marginal bene�t of an increase in peer quality is larger for students with average quality

than for students with low quality.

In summary, these graphs show that test scores do not have a monotonic relationship

with peer quality, but are monotonically increasing with student quality. An increase in

peer quality has a positive e¤ect on tests scores; however, this e¤ect is bigger for an average

student. As we argued before, the results obtained in this section cannot de�ne the optimal

way to allocate students in the last year of elementary school to classrooms in schools in

Brazil. The optimal way to allocate students to classrooms depends on the distribution

of student quality in the school. In a school with a large contingent of average students,

segregation by type can be optimal, since the marginal bene�ts obtained by the average

24 In this restricted sample, the upper quartile of the distribution of student�s quality is 0.6470, the lower
quartile is -0.4863 and the average -0.4863.
25The upper quartile of peer�s quality distribution is 0.7392, the lower quartile is -0.1305 and the mean

corresponds to 0.2602.
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quality students can compensate the marginal losses of a small contingent of low quality

students. However, the opposite will happen in a school with a large fraction of low types.

When we compare the results obtained in this section with the linear-in-means model,

we can see that the linear-in-means model does not take into account nonlinearities in the

production function that are important in the estimation of peer e¤ects. In particular, using

this semiparametric methodology, we obtain peer e¤ects that are an increasing function of

student quality.

One of the assumptions used to identify the average structural function and the average

derivative is the support condition, assumption 3.7. This assumption establishes that we

can move the control variables over their entire support. Since our instrumental variable is

a vector of dummy variables, this condition is violated. One way to deal with this problem

is to restrict the format of the function 	(Ag;Wg) in a such a way that we can identify

the parameters of interest under discrete support. Another way to deal with that is to

examine in which range of (Qig; Qg) the support condition is identi�ed. In this range, we

may identify some bounds for the parameters of interest, instead of point identifying the

average structural function and the marginal derivative. Both of these approaches will be

developed in future work.

6.3 Discussion: Exclusion Restriction

The student allocation rule is a valid instrument under two conditions: 1) peer quality is

correlated with the allocation system; 2) if, conditional on school characteristics (including

the admission rule and teacher allocation rule) and classroom characteristics, the correlated

e¤ects (�g) vary independently of the way students are allocated to classrooms. The idea

behind this instrument is that the correlation between the unobservable correlated e¤ects

(�g) and peer�quality (Qg) arises from the fact that students are not randomly selected

into classrooms. The allocation rule allows us to control for the way students are selected

into classrooms if, conditional on school and classroom characteristics, these allocation

rules only impact student achievement through their e¤ect on group composition. We

cannot test this exclusion restriction, but in this section we analyze situations in which

this restriction may be violated, and examine the impact of this violation on the results

obtained in the previous section.

As we argue in the previous sections, if there is an input that is not observable by

the econometrician, but is observable by the Principal, and this input is correlated with
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the decisions made at the school, then the exclusion restriction is violated. To check this

hypothesis, we examine how other decisions made at the school level vary with the student

allocation rule. The idea is that if there is some unobservable component that is related to

the student allocation rule, this component should impact not only the student allocation

rule but also other decisions made by the school. For example, if some parents can in�uence

the school�s decision, they will pressure the school not only to have their kids in high quality

peer groups, but also to put their kids in classrooms that have better teachers, to provide

tutoring for students that fall behind and can be a bad in�uence in the classrooms, etc.

If there are no unobservable variables, conditional on school characteristics, we shouldn�t

observe a pattern in the decisions made at the school level.

Table 5 shows how other decisions made at the school level (school admission, teachers

allocation rule, etc.) vary with how students were allocated to classrooms. In the last

column of this table, we present a Wald test for the null hypothesis that decisions made at

the school level shouldn�t be statistically di¤erent among the student allocation rules. This

table shows that only 58% of the schools that have no speci�c criterion to allocate students

to classrooms provide training for the teachers, while 68% of the schools that allocated

students based on segregation by age provide training for teachers. The di¤erence in the

percentage of schools that provide training programs for teachers among the allocation

rules is statistically signi�cant. We can also see that 61% of the schools that do not have a

student allocation rule does not have an admission rule, while more than 50% of the schools

that choose one of the allocation criteria have an admission rule. Again, the di¤erence in the

percentage of Principals that select each one of the admission rules among the allocations

rules is signi�cant. 24% of the schools that have no speci�c criterion to allocate students

into classrooms also have no speci�c way to allocate teachers to classrooms, while 28% of the

schools that choose to segregate students by score allocate teachers to classrooms based on

teacher�s preferences. In addition, only 25% of the schools that have no student�s allocation

rule have a program to reduce drop out, while 41% of the schools that segregate students by

age have a program to reduce drop out. This table indicates that the schools that have no

speci�c way to allocate students to classrooms are also the ones without programs to reduce

drop out or grade repetition. Without controlling for school characteristics, we cannot rule

out the hypothesis that there are some unobservable components that can a¤ect all the

decisions made at the school level. For example, a school that su¤ers pressure to improve

the learning process in the school (due to parental pressure, or high ability of the teachers,

etc.) segregates students by score, allocates teachers according to their preferences, has a
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program to reduce grade repetition, and provides tutoring for the students.

Given the evidence in this table, we run a robustness test. In the vector of controls,

we include whether the school provides training for teachers, whether the school has a

drop-out program, whether it has a grade-repetition program and whether school provides

tutoring for students(W )26. Figure 10 presents the average production function obtained

using a control function that includes these variables in the school�s characteristics. As in

Graph 6, test scores are increasing with student quality. However, di¤erent from Graph

6, this graph shows that test scores are increasing with peer quality. Figure 11 shows the

estimated peer e¤ects. Peer e¤ects are positive and increase with student quality. In this

graph, peer e¤ects are larger than in Graph 9. These graphs indicate that if there is a bias

in our estimation due to an unobservable component that is correlated with the decisions

made at the school level, this bias is underestimating the marginal e¤ect of peer quality

on student achievement; although the sign of peer e¤ects is always positive.

We believe that the regulations are stronger in public schools than in private schools in

Brazil. In private schools, parents and teachers may have the power to reallocate student

and teacher to classrooms, and the decision rule made at the school level may not be

binding. In this case, the exclusion restriction is violated. To investigate this possibility,

we restrict our sample to public schools and estimate the average production function

and peer e¤ects. The drawback of restricting the sample to public school is that if high

quality students are concentrated in private schools, we are missing an important part of

the distribution of student quality.

In the SAEB sample, we have 14,149 students allocated into 1,769 classrooms in public

schools. Public schools correspond to 66% of the classrooms represented in the data. As

we expect, the distribution of quality obtained using the public school sample is di¤erent

from the one obtained using the full sample. Student quality varies from -35.13 to 12.05,

with a standard deviation of 7.01 and a mean of -7.71. Peer quality varies from -34.84

to 4.94, with a standard deviation of 5.27 and a mean of -8.24. Comparing these values

with those obtained in Table 3, we con�rm that the very good students are concentrated

26We didn�t add these variables in the estimation in the previous section, because these variables can
come from di¤erent decisions problems. The Principal can decide if he is going to provide training for
the teachers, tutoring, etc. after he allocated students to classrooms, and consequently these programs
could be induced by the allocation rules, and shouldn�t impact peer quality. For example, perhaps if the
Principal chooses how to allocate students and teachers to classrooms at the beginning of the school year,
but the Principal decides to provide tutoring for the students in the middle of the school year. This decision
shouldn�t impact peer quality.
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in private schools. The maximum value of student quality obtained for public schools

is lower than the maximum obtained for the full sample. Figure 12 plots the average

production function for public schools against peer quality and student quality. Graph 12

is very di¤erent from Graph 6, which was obtained with the full sample. In the sample

of public schools, test scores increase in student quality for students with quality above

0.6, but decrease in student quality for other students. In addition, tests scores increase

with peer quality for groups with quality below 0, but decrease with peer quality for high

quality groups. These results may be related to the fact that public schools concentrated

the bad students, and we are probably underestimating the e¤ect of student quality on

test scores. Figure 13 shows the peer e¤ects obtained using the sample of public schools.

Peer e¤ects are positive for students with quality greater than -0.4, and increase with peer

quality. Although, the e¤ect of peer quality on test scores is not signi�cant for high quality

students.

In summary, we have evidence that peers e¤ects are positive for students in the last year

of elementary school in Brazil, and that student test scores increase with student quality

for average and high quality students. These results hold under di¤erent robustness checks.

7 Final Remarks

In this paper, we propose a semiparametric methodology to estimate peer e¤ects in class-

rooms. In this semiparametric methodology, we assume that student achievement is a

function of the student quality, a single index of student characteristics and peers quality,a

symmetric function of this index in the group. This methodology generalizes the linear

models used to estimate peer e¤ects in di¤erent ways. First, it allows peer e¤ects to vary

with student�s quality, allowing students a the upper tail of the distribution of quality to

respond di¤erently from students at the bottom of the distribution. Second it controls for

"membership endogeneity" using a control function approach

The semiparametric methodology is applied to estimate the education production func-

tion and peer e¤ects for students in the last year of elementary school in Brazil, using the

information in the Brazilian National Evaluation System of Basic Education (SAEB) in

2003. Using the way students were allocated to classrooms in each school as the vector of

instruments, we �nd that student test scores are a monotonic increasing function of stu-

dent quality. In addition, we �nd evidence that peer e¤ects are positive for students with

quality greater than -0.4, and the students with an average quality have a higher marginal
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bene�t from peer quality than the student with low quality.

Although this semiparametric methodology provides a �exible way to estimate peer

e¤ects, it has some shortcomings. One of the drawbacks of this methodology is that our

estimator is not root-N consistent, and converges at a slower rate than the standard series

estimators used by Newey, Powell and Vella (1999). The rank estimator used in the �rst

step of the estimation procedure converges at a slower rate than root-N, which impacts the

rate of convergence of the estimators of the average structural function and peer e¤ects.

If we impose conditions on the structural function H (:) that are stronger than just the

monotonicity on Qi, we may improve the rates of convergence in the �rst step. There is

a trade o¤ between rates of convergence and �exibility of H (:). This new methodology

focuses on providing a semiparametric methodology assuming a very �exible H (:).

Another drawback of this methodology is that we are assuming additivity of the unob-

servable components. As pointed out by many authors (Newey and Imbens (2006), Altonji

and Manski (2005), etc.), this assumption is restrictive, and it does not allow interactions

between the observable and unobservable components in the model. These interactions

between unobservables and observables are important to motivate, from the economic per-

spective, the endogeneity presented in a model with peer e¤ects. There is a growing

literature focused on semiparametric and nonparametric identi�cation and estimation in

settings in which the disturbances are nonadditivity components of the model. For exam-

ple, Altonji and Manski (2005) consider a panel data model with nonadditive disturbances,

Chester (2002) looks at local identi�cation, Imbens and Newey (2002) focus on a control

function approach. The semiparametric model proposed in this chapter �ts into the frame-

work of Imbens and Newey (2002). Identi�cation of the average structural function and

peer e¤ects can be achieved replacing the conditional expectation assumptions with inde-

pendence assumptions and the stationarity condition of the individual heterokedasticity by

independence.

Another possible extension of the semiparametric methodology proposed in this paper

is to use a more �exible and interesting de�nition of peer quality. The idea is to de�ne peer

quality as an exchangeable function of the single indexes that de�ned student�s quality

in the group. In this case, peer e¤ect can be de�ned as moments of the distribution of

student�s quality. This approach will provide insights about how the inequality of types

inside a classroom may a¤ect peer e¤ects, which is important in determining which is the

optimal way to allocate students to classrooms.

An ongoing work is a set of Monte Carlo simulations that provide insights about the
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small sample properties of our estimator and how sensitive the estimator is to the choice

of the smooth parameters.
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Appendix

A Socioeconomic Index

The aggregate socioeconomic index used in the empirical analysis is created by a Principal Component
analysis. We assume that there is a linear model that relates the items of a questionnaire with a number
of latent factors,

X � � = RF + %

where X is the item in the questionnaire, � is mean of X, R is the matrix of weights and F is the factor.
In this case, F are orthogonal variables that are independent of %, which implies that E [F ] = 0 and
Cov [F ] = I. In addition, we de�ne E [%] = 0 and Cov [%] = �:

Since F and % are independent,
� = Cov [X] = RR0 + �

Using the principal components analysis, we decompose � ' U�UT +�, where � is a diagonal matrix
with eigenvalues, and U is the matrix with eigenvectors.

The factors are extracted by the principal component analysis thought the following steps:

1. Get the matrix X

2. Subtract the mean of each column of X

3. Calculate the covariance matrix of X

4. Calculate the eigenvector and eigenvalues of the covariance matrix

5. Choosing the highest eigenvector that is associated with the highest eigenvalue. This eigenvector is
the basis of the principal component. The principal component is the square root of the eigenvalue
times the eigenvector.

To construct this single index, we use 12 items of the questionnaire: number os TVs in the household (0,
1, 2 ,3 4 or more), number of radios in the household (0, 1, 2 ,3 4 or more), a dummy variable that is equal
to 1 if the household has VHS or DVD, if the household has freezer (0 for none, 1 for freezer without fridge,
2 for freezer with fridge)27 , a dummy variable that is equal to 1 if the household has washing machine, a
dummy that is equal one if the household has vacuum cleaner, number of cars in the household (0, 1, 2 or
more), if the household has a computer (0 for none, 1 for computer without internet, 2 for computer with
internet), if the household has a maid (0 for none, 1 for a maid that goes to the house less than once a
week, 2 for a maid that goes to the house more than once a week), number of bathrooms in the household
(0, 1, 2, 3 or more), number of bedrooms per person in the household (0 for >3, 1 for (2,3], 2 for [2,1), 3
for <=1).

27The construct of this variables uses 2 items of the questionnaire.
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Table 1: Summary Statistics

Variable Maximum Minimum Mean Std
Profic(Y ) 369.98 72.19 193.12 46.46
Student Characteristics (X)
Female 1 0 0.49 0.50
Age 15 8 10.59 1.19
White 1 0 0.42 0.49
Socioeconomic Index (NSE) 9.01 -6.49 0.43 3.41
Parent education 9 1 6.04 2.55
No education 1 0 0.02 0.15
Elementary School (Incomplete) 1 0 0.07 0.25
Elementary School 1 0 0.16 0.36
Middle School (Incomplete) 1 0 0.08 0.26
Middle School 1 0 0.12 0.33
High School (Incomplete) 1 0 0.04 0.19
High School 1 0 0.16 0.37
College (Incomplete) 1 0 0.07 0.26
College 1 0 0.28 0.45
Preschool 1 0 0.83 0.38
School Characteristics (W )
Urban 1 0 0.96 0.20
Private 1 0 0.29 0.46
Number of students
in the classroom

56 2 29.13 8.28

Note: In this table, the mean of the characteristics is taken over all students in all schools. Parent

education and Region include the categories listed below the variables.
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Table 2: First Stage
Variables Semiparametric Case Parametric Case

0:5 � �N 0:75 � �N �N

Female
�6:191
(16:9997)

�11:3735
(1:6536)��

�2:821
(1:1539)��

�5:9969
(0:4949)��

Age
�8:5294
(24:7368)

�10:0904
(1:1529)��

�3:4956
(1:0971)��

�5:0402
(0:2605)��

White
2:7799
(7:5403)

2:2631
(1:2278)

0:9427
(0:3946)��

1:8234
(0:5432)��

NSE 1 1 1
0:1196
(0:1145)

Parent schooling
2:7799
(4:163)

1:2152
(0:1813)��

0:6296
(0:2462)��

0:8979
(0:1263)��

Preschool
8:8737
(24:2689)

13:4491
(1:3842)��

4:1595
(1:8638)��

9:4393
(0:7204)��

Bandwidth 0:2476 0:3714 0:4134 -
N. Observations 103; 667 103; 667 103; 667 20; 137

Note: To obtain these maximum score estimators, we use the annealing algorithm, using the values for

the initial parameters proposed by Coronal et al (1987). In the semiparametric case, we use a kernel of

order 4 and the bandwidth was selected by Horowitz�s plug-in method (�N ). The values in the parentheses
represent the standard errors using the formula for the asymptotic variance of the smoothed estimator in

the nonparametric case and the GMM asymptotic variance in the parametric case. In this table, ** means

signi�cant at 5%, * means signi�cant at 10%.
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Table 3: Student�s Quality and Peer�s Quality

Variable Student Quality (bqig)
0:5�N 0:75�N �N

Para
metric

Mean �8:04 �22:11 �5:91 �7:06
Median �5:54 �19:17 �5:29 �5:18
Std. Dev. 17:67 17:90 7:75 9:46
Min �77:67 �96:91 �36:18 �46:14
Max 36:69 25:11 15:82 15:33
N. Obs 20137

Variable Peer quality (bqg)
0:5�N 0:75�N �N

Para
metric

Mean �8:25 �22:40 �6:01 �7:06
Median �7:54 �20:82 �6:04 �6:25
Std. Dev. 14:68 14:31 6:63 6:57
Min �77:39 �96:62 �35:90 �46:11
Max 25:52 12:37 9:68 9:97
N. Obs 2687

Note: In the estimation of the average structural function and peer e¤ects, we use the estimated values
of quality obtained using the optimal bandwidth (�N )
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Table 4: Parametric Case

Second Step Third Step
Dependent Variable peers�quality Classroom�s Test Score
Allocation Rule

Integration by age
0:5300

(0:0633)��
�

Integration by score
0:3113

(0:0832)��
�

Segregation by Score
0:4607

(0:0734)��
�

No criterion
0:4415

(0:0688)��
�

peer quality � 4:0460
(14:281)

vg � 8:2209
(12:6073)

N. Observations 2687 2687
R-squared 0:4393 0:4168

Notes: In this regression we include a vector of controls that includes: school characteristics (region, if
rural or urban, if private or public, number of students per classroom, if the classroom has air circulation

and light, if the school has access to teaching material), teacher characteristics (sex, age, race, experience,

education, if the teacher assigns and grades homework), Principal characteristics (sex, age, race, experience,

education). We also include the admission rule used by the school and the way teachers were allocated

to classroom as a vector of instruments. In the second step, the exclusion category among the student

allocation rules is integration by age. We calculate the standard deviation using the GMM approach

explained in a footnote of the chapter 3. In this table, ** means signi�cant at 5%, * means signi�cant at

10%.
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Table 5: Allocation Rule vs School�s decision
Mean of the Variables Test

Variables None Age-Int Score-Int Age-Seg Score-Seg P-value
School
Teacher�s Training 0.58 0.67 0.65 0.68 0.64 0.02
Pedagogical Project 0.89 0.89 0.94 0.93 0.96 0.00
Design of Pedagogical Project
Suggest by Education Institute 0.09 0.11 0.11 0.13 0.09 0.46
Made by Principal 0.03 0.01 0.03 0.01 0.03 0.01
Made by Principal, 0.12 0.11 0.16 0.12 0.09 0.25
review by teachers
Suggest by the teachers 0.07 0.09 0.10 0.10 0.18 0.00
Made by Principal and teachers 0.56 0.56 0.52 0.54 0.56 0.89
Admission Rule
None 0.61 0.36 0.43 0.42 0.28 0.00
Exam 0.02 0.05 0.06 0.03 0.03 0.02
Lottery 0.00 0.01 0.00 0.00 0.02 0.00
Neighborhood 0.13 0.15 0.17 0.18 0.27 0.00
First come 0.12 0.29 0.19 0.27 0.21 0.00
Other 0.11 0.14 0.15 0.10 0.19 0.03
Teacher�s Allocation Rule
None 0.24 0.08 0.07 0.07 0.07 0.00
Teacher�s preference 0.20 0.20 0.21 0.17 0.28 0.05
Good teachers + Good Students 0.02 0.05 0.09 0.07 0.03 0.00
Good teachers + Bad Students 0.05 0.10 0.12 0.10 0.09 0.00
Same teacher in the same class 0.15 0.17 0.19 0.17 0.12 0.11
Teachers switch grades 0.17 0.23 0.17 0.27 0.16 0.00
Lottery 0.01 0.01 0.00 0.02 0.01 0.00
Other 0.17 0.16 0.16 0.13 0.25 0.02
Program to
Reduce drop out 0.25 0.35 0.28 0.41 0.32 0.00
Reduce grade repetition 0.46 0.64 0.55 0.64 0.64 0.00
Help learning 0.81 0.86 0.80 0.80 0.89 0.00
Choose of books
Teachers 0.45 0.51 0.40 0.52 0.55 0.00
Principal, but ask teacher�s opinion 0.13 0.12 0.14 0.11 0.10 0.41
Principal+Pedagogical coordinator 0.01 0.01 0.00 0.01 0.00 0.00
Principal 0.01 0.00 0.01 0.01 0.01 0.75
Outside Instution 0.02 0.02 0.01 0.02 0.03 0.17
Don�t know 0.07 0.07 0.08 0.07 0.09 0.72
No books 0.43 0.59 0.59 0.58 0.31 0.05
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Figure 1: Test Scores

Figure 2: Test Scores vs Students characteristics
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Figure 3: Test Scores vs School Characteristics

Figure 4: Test Scores vs Allocation Rules
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Figure 5: Test Scores vs Students Allocation

Figure 6: Average Production Function
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Figure 7: Average Production Function vs Peers Quality
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Figure 8: Average Production Function vs Student Quality

Figure 9: Peer E¤ects
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Figure 10: Average Production Function (with more controls)

Figure 11: Peer E¤ects (with more controls)
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Figure 12: Average Production Function (only Public Schools)

Figure 13: Peer E¤ects (only Public Schools)
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