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Abstract

This paper presents a simple model of airline schedule competition that circumvents the com-
plexities of the spatial approach used in earlier papers. Consumers choose between two duopoly
carriers, each of which has evenly spaced flights, by comparing the combinations of fare and
expected schedule delay that they offer. In contrast to the spatial approach, the particular
departure times of individual flights are thus not relevant. The model generates a number
of useful comparative-static predictions, while welfare analysis shows that equilibrium flight
frequencies tend to be inefficiently low.
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1. Introduction

Despite the existence of a large theoretical literature analyzing the economics of airline

behavior, little attention has been devoted to a key aspect of airline operations: scheduling

decisions in competitive markets. Since the convenience of airline schedules is a paramount

concern of passengers along with the fares they pay, this omission represents a serious gap in

the theoretical literature.1 The purpose of the present paper is to help fill this gap by analyzing

a simple model of schedule competition in a duopolistic airline market.

The few existing papers on schedule competition mostly take a spatial approach to the

problem. In these models, consumers have a distribution of desired departure times, and

airlines set their flight schedules taking account of this distribution, along with the schedules

of competitors, while also setting fares. In its most general form, the resulting problem is

one of spatial competition, where a long tradition of analysis exists. d’Aspremont et al. (1979)

present the classic treatment of the simplest spatial-competition problem, where two firms each

choose a single location (flight time) along a line while also setting prices. While this problem

is difficult enough, the most general analysis of schedule competition would allow firms to

endogenously choose, in Nash fashion, the number of locations at which they operate (number

of flights), a choice that requires prior computation of the spatial-competition equilibrium for

each possible combination of flight numbers for the two firms.

Because this problem is unmanageable analytically, various simplifying assumptions are

imposed in the papers that analyze spatial schedule competition. Schipper et al. (2003, 2006)

suppress the locational-choice dimension of the problem by assuming that flights are spaced

equally around a circle, with competitors’ flights interleaved to the maximum extent possible.

In the duopoly case, interleaving is perfect when flight numbers are equal (with adjacent flights
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always belonging to different airlines), but otherwise, some adjacent flights belong to the same

firm. By contrast, Lindsey and Tomaszewska’s (1998) analysis eliminates the choice of flight

frequency, with each airline operating a fixed number of flights. Once a consumer has identified

each airline’s best flight from among those it operates, the remaining choice between airlines is

governed by a random utility model. The analysis of the resulting flight-location/fare equilibria

is done numerically.2

To avoid the complexities of spatial models, the present paper takes a non-spatial approach

to analyzing schedule competition. The analysis uses elements of the monopoly scheduling

model of Brueckner (2004) along with the brand-loyalty framework from Brueckner and Whalen

(2000). In Brueckner (2004), consumers must commit to travel before knowing their preferred

departures times, which are uniformly distributed around a circle. Letting T denote the time

circumference of the circle, consumer utility then depends on expected schedule delay,3 which

equals T/4f , where f is number of (evenly spaced) flights operated by the monopoly airline.

Adapting this approach to a competitive setting, the consumer is assumed to compare expected

schedule delays for the two duopoly airlines, T/4f1 and T/4f2, along with the fares they charge,

p1 and p2, in making a choice between them. While this approach may not be fully accurate for

individual consumers, it appears to capture the choice setting of a corporate travel department,

which must sign an exclusive contract with a particular airline for transporting its employees.

The travel department cares about the average schedule delay for the company employees,

while also seeking low fares. It signs an exclusive contract with the airline providing the best

combination of these features. Alternatively, the model could apply to individual business

travelers, who cannot predict their travel times and thus purchase refundable full-fare tickets,

which allow them to board the next flight upon arriving at the airport. In either case, the

precise departure times of individual flights are not relevant, accounting for the simplicity of

the overall approach.

Without further assumptions, the airline with the most attractive frequency/fare com-

bination would attract all the passengers in the market. To avoid this outcome, consumers

(corporate travel departments) are presumed to exhibit brand loyalty to particular carriers,

which means that an airline with an inferior frequency/fare combination can still attract some
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passengers. Following Brueckner and Whalen (2000), this approach is formalized by specifying

a utility gain from using airline 1 rather than airline 2, denoted a, and assuming that this gain

is uniformly distributed over the range [−α/2, α/2], so that half the consumers prefer airline

1 and half prefer airline 2. Note that α is a measure of (exogenous) product differentiation in

the sense that a small α implies a small maximum gain from using one airline or the other,

indicating similar products.4

Under the above assumptions, the two carriers compete by choosing both frequencies and

fares to maximize profit. The resulting model is very similar in its broad outlines to the frame-

work used by Heimer and Shy (2006) to study the formation of airline alliances, which they

portray as benefiting passengers via the higher flight frequencies made possible by combining

airline operations. The present model differs, however, by using more-realistic functional forms

and by offering a richer specification of the market setting. These differences will be spelled

out more fully in the ensuing discussion.

The model is also related to the literature on vertical product differentiation, initiated

by Gabszewicz and Thisse (1979) and Shaked and Sutton (1982) and summarized by Tirole

(1988).5 In such models, consumer utility is usually given by λs − p, where s is product

quality and p is price. As seen below, the analogous portion of the utility function in the

present model is −γ/f − p, which differs only in the reciprocal form of the quality measure

(flight frequency). Despite this similarity, the sources of consumer heterogeneity are entirely

different in the two setups. While consumers have different valuations of product quality (λ)

in vertical product-differentiation models, all consumers value flight frequency equally under

the present approach. Heterogeneity arises instead through brand loyalty, which introduces a

consumer-specific additive shift factor (rather than slope variation) into the utility function.

As noted above, the dispersion of this brand-loyalty factor, which ranges over [−α/2, α/2],

captures an exogenous degree of product differentiation that is built into the model rather

than determined in equilibrium.

Because of this difference in the treatment of consumer heterogeneity, equilibria differ in

a fundamental way under the two approaches. In the vertical-differentiation literature, en-

dogenous product differentiation emerges, with one firm choosing the highest possible product
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quality and the other choosing a lower quality, as firms seek to soften price competition.

Consumers select between the two goods according to their valuations of quality. With all

consumers valuing flight frequency equally in the present model, an impetus for the delivery

of different product qualities does not exist. The relevant equilibrium is then symmetric, with

both firms offering identical frequencies, while recognizing that their quality choices affect de-

mand. Note that a symmetric equilibrium is realistic in the airline context, where competing

firms usually offer similar flight frequencies. Observe also that, despite its portrayal of flight-

frequency competition, a model of this type could be applied more generally in other contexts

within industrial organization.

The goal of the paper is to demonstrate the tractability and usefulness of the non-spatial

approach to schedule competition, while also highlighting the general value of this alternative

portrayal of product-quality competition. This goal is achieved by exploring the nature and

comparative-static properties of equilibrium and by carrying out welfare analysis. The plan

of the paper is as follows. Section 2 analyzes the model under the assumption that fares and

flight frequencies are chosen simultaneously by the duopolists. Comparative-static analysis of

the resulting equilibrium is presented, showing how equilibrium fares and frequencies depend

on the various parameters of the model. Because some of the comparative-static effects are

ambiguous in sign, section 3 presents illustrative numerical examples. Section 4 characterizes

the social optimum, comparing optimal frequencies and traffic levels to those emerging in

equilibrium. Section 5 considers sequential (rather than simultaneous) choices of fares and

frequencies, with the frequency choice made first, and compares the resulting equilibrium to

both the simultaneous-choice equilibrium and the social optimum. Section 6 offers conclusions.

2. The Model and the Simultaneous-Choice Equilibrium

2.1. Basic analysis

In the model, utility for a consumer traveling by air is given by c + travel benefit −
schedule delay cost, where c is consumption expenditure. Schedule delay cost is equal to

a disutility parameter δ > 0 times the expected schedule delay expression from above, thus

equaling δT/4fi ≡ γ/fi for airline i, i = 1, 2, where γ = δT/4. Travel benefit has two
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components: b, equal to the gain from air travel, and a, the airline brand-loyalty variable from

above, which gives the additional gain from using airline 1 (relative to travel on airline 2).

Recall that a varies across consumers. For consumers using airline i, consumption expenditure

equals y − pi, where y is income, assumed to be uniform across consumers without loss of

generality, and pi is airline i’s fare. Utility from travel on airline 1 is thus given by y−p1 + b+

a−γ/f1, and utility from travel on airline 2 is given by the analogous expression with a = 0.6

Assuming that the consumer undertakes air travel, he will choose airline 1 when

y − p1 + b + a − γ/f1 > y − p2 + b − γ/f2, (1)

or when

a > p1 − p2 + γ/f1 − γ/f2. (2)

Thus, for the consumer to choose airline 1, brand loyalty to 1 must be at least as large as

the fare plus delay-cost difference between airlines 1 and 2. Otherwise, conditional on flying,

the consumer will choose airline 2. As for the air-travel decision itself, the benefit from the

consumer’s “outside option” (the next best alternative) must be considered. That option might

involve not traveling at all, but more realistically, the outside option could be travel using a

different transport mode, such as automobile or train. Whatever its characteristics, the outside

option will be unattractive when the air-travel benefit b is sufficiently high, making the margin

of choice the one between airlines 1 and 2. One group of consumers in the model satisfies

this requirement, having a common high level of the air-travel benefit, denoted bH . This

high-benefit group (denoted type H) represents a proportion µ of the consumer population.

To use (2) to compute airline 1’s passenger traffic from among the type-H group, let the

consumer population size be normalized to unity, and recall that a is uniformly distributed

over the range [−α/2, α/2]. Then airline 1’s type-H traffic is given by

qH
1 = µ

∫ α/2

p1−p2+γ/f1−γ/f2

1

α
da, (3)

where 1/α gives the density of a.
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The rest of the population, representing a fraction 1 − µ, has a common low level of the

air-travel benefit, denoted bL. It is assumed that, in equilibrium, a portion of this group ends

up not undertaking air travel, an outcome that is assured when bL and other parameters in

the model take appropriate values (see below). To understand this outcome, let the common

benefit level from the outside option, net of any fare paid or schedule delay incurred, be denoted

g, yielding a utility level of y + g. Then consider a consumer who is indifferent between the

airlines, with a = 0. This individual will prefer the outside option to traveling on airline 1 if

y − p1 + bL − γ/f1 < y + g, or if bL − g < p1 + γ/f1, and will prefer the outside option to

traveling on airline 2 if bL−g < p2 +γ/f2. If both inequalities are satisfied, a type-L consumer

indifferent between the airlines thus will not undertake air travel. But the additional benefit

from airline brand loyalty may tip the balance if it is strong enough. For example, a passenger

loyal to airline 1 will find air travel and the outside option equally attractive when his loyalty

value satisfies y − p1 + bL + a − γ/f1 = y + g, or a = p1 + γ/f1 − bL + g.7 Normalizing g to

zero for simplicity, consumers with a values larger than

â = p1 + γ/f1 − bL (4)

will then strictly prefer travel on airline 1 to the outside option. Since bL < p2 + γ/f2 holds

by assumption, the inequality in (2) is satisfied for all these passengers, indicating that airline

1 is also preferred to airline 2. Therefore, airline 1’s passenger traffic from among the type-L

group is equal to

qL
1 = (1 − µ)

∫ α/2

â

1

α
da. (5)

The margin of choice for the type-L group is thus between the preferred airline and the

outside option, while the type-H choice margin is between airlines 1 and 2. Observe, however,

that the relevant margin for a given group is in fact endogenous and dependent on equilibrium

fares and frequencies.8 It is assumed that, in equilibrium, the relevant margins are as indicated.

Carrying out the integration in (3) and (5) and adding the results, airline 1’s total traffic,
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qH
1 + qL

1 , is equal to

q1 =
1

2
− 1

α

[
p1 − µp2 + γ/f1 − µγ/f2 − (1 − µ)bL

]
, (6)

and airline 2’s traffic is given by the analogous expression with the 1 and 2 subscripts inter-

changed. Note from (6) that airline 1 loses traffic when its fare rises or its frequency falls,

while it gains traffic when p2 rises or f2 falls. In the first case, type-H traffic is lost to airline

2, and type-L traffic is lost to the outside option. To further interpret (6), suppose that the

entire population is of type H, so that µ = 1. Then, in a symmetric equilibrium, where p1 = p2

and f1 = f2, (6) indicates that the airlines each carry traffic of 1/2, equal to half of the total

unitary population (all of which undertakes air travel). When µ < 1, traffic is less than 1/2,

but its magnitude depends on the equilibrium fare and frequency.

To characterize the equilibrium, the airline cost structure, which is symmetric across the

carriers, must be specified. Following Brueckner (2004), an airline operates aircraft with s

seats, with the load factor assumed to equal 100%, so that all seats are filled. A flight’s

operating cost is given by θ + τs, where θ is a fixed cost independent of aircraft size and τ

is the marginal cost per seat.9 Under this specification, cost per seat realistically falls with

aircraft size. Flight frequency, s and traffic are all related by the equation q = fs, which

says that an airline’s total traffic equals frequency times seats per flight. Thus, while s is

endogenous, its value is determined residually once q and f are known. Viewing f as product

quality, this cost structure presumes that quality has a fixed cost but no associated variable

cost, an assumption that is sometimes used in the vertical product-differentiation literature.

Using the above information and (6), airline 1’s profit is equal to

π1 = p1q1 − f1(θ + τs1)

= p1q1 − θf1 − τq1

= (p1 − τ )

(
1

2
− 1

α

[
p1 − µp2 + γ/f1 − µγ/f2 − (1 − µ)bL

])
− θf1. (7)

Note in the second line of (7) that costs separate into the fixed cost of flights and the variable

cost of seats, which is independent of the number of flights.
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Given that an airline can adjust its flight frequency fairly easily, it may be reasonable

to assume that, in maximizing profit, fares and frequencies are chosen simultaneously. For

comparison purposes, the sequential case (where frequency is chosen first) is considered below.

With simultaneous choice, airline 1 chooses p1 and f1 to maximize (7), viewing p2 and f2 as

parametric. The first-order conditions are

∂π1

∂p1
=

1

2
− 1

α

[
p1 − µp2 + γ/f1 − µγ/f2 − (1 − µ)bL

]
− p1 − τ

α
= 0 (8)

∂π1

∂f1
= (p1 − τ )

γ

αf2
1

− θ = 0. (9)

The second-order conditions ∂2π1/∂p2
1, ∂2π1/∂f2

1 < 0 are satisfied by inspection, and the

remaining positivity condition on the Hessian determinant is assumed to hold.

With firm symmetry, the symmetric equilibrium is the natural focus, and this equilibrium

is found by setting p1 = p2 = p, f1 = f2 = f in (8) and (9) and solving for these common

values. Substituting (9) into (8) and rearranging, the f solution satisfies

[
αγ/2 + (1 − µ)γ(bL − τ )

]
f − (1 − µ)γ2 = (2 − µ)αθf3, (10)

and the p solution conditional on f is then found by rearranging (9):

p =
αθf2

γ
+ τ. (11)

The f solution in (10) occurs at an intersection of the cubic curve represented by the RHS

and the line represented by the LHS, whose vertical intercept is negative. If f ’s coefficient

on the LHS is also negative, then (10) has no positive solution (the LHS is then negative for

any positive f). As a result, the f coefficient must be positive, giving the RHS line a positive

slope. The f solution is then given by one of the intersections in the positive quadrant, as

seen in Figure 1, and it is easily seen that only the second of these intersections satisfies the

second-order condition.10
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2.2. Comparative statics

To illustrate the properties of the equilibrium, this section presents comparative-static

analysis. To start, it is interesting to consider the solution that emerges when µ = 1, indicating

the absence of type-L consumers. Substituting µ = 1 into (10) and (11) yields

f =
√

γ/2θ (12)

p = τ + α/2. (13)

Thus, the fare p equals the marginal cost of a seat (τ ) plus a markup that depends on the

degree of product differentiation (α/2). As differentiation disappears (with α converging to

zero), the fare converges to marginal cost, the Bertrand-equilibrium outcome. Frequency f ,

on the other hand, is independent of τ and α but rises with the disutility of schedule delay (γ)

and falls as the fixed flight cost θ rises, both intuitive conclusions. Note that since the entire

population undertakes air travel in the absence of type-L consumers, traffic remains fixed at

1/2 regardless of parameter values.11

To conduct comparative-static analysis when µ < 1, it is useful to rewrite (8) in the

following two different forms, after imposing symmetry:

p =
α/2 − (1 − µ)(γ/f − bL) + τ

2 − µ
; q =

p − τ

α
. (14)

Compared to (11), the first equation in (14) provides an alternate solution for p in terms of f

that is useful in evaluating comparative-static effects. Once the effect of a parameter change

on p is known, the second equation in (14) is used to determine the impact on traffic. The

analysis can be carried out mostly by inspection, using (14) along with (10), (11) and Figure

1.

An increase in the fixed flight cost θ raises the height of the cubic curve in Figure 1’s

positive quadrant without affecting the line, leading to a decrease in f . While the p effect from

(11) appears ambiguous, (14) shows that p actually falls, as does q. Since costs have risen,

this fare decrease is counterintuitive, but the apparent explanation comes from the decline in
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frequency, which worsens service quality (the drop in traffic in response to higher cost does

make sense, however). Note the contrast to the µ = 1 case, where p is unaffected by the level

of fixed cost. Thus, for θ to affect fares, an air-travel/outside-option margin must exist, so

that total traffic is endogenous rather than fixed at a value of 1/2.

When the marginal seat cost τ rises, the slope of the line in Figure 1 falls, reducing f .

However, the changes in both p and q are ambiguous. Recall, by contrast, that a higher τ

leaves f unchanged while unambiguously raising p in the µ = 1 case.

When the disutility of schedule delay (γ) rises, the slope of the line changes in an ambiguous

direction while its intercept becomes more negative, leading to an ambiguous change in f .

However, as µ approaches 1, the intercept approaches zero and the effect of its change becomes

negligible, while the slope impact becomes unambiguously positive. The positive slope effect

thus dominates the outcome, raising f . While this impact matches intuition, the associated

changes in p and q are ambiguous.

When product differentiation (α) increases, both the slope of the line and the height of

the cubic curve rise, again suggesting an ambiguous effect on f . However when the type-L

travel benefit is low, with τ > bL holding, the net effect is to push the intersection to the right,

raising f .12 From (11) or (14), p rises, while the change in q from (14) is ambiguous. Thus,

when the perceived brand difference between the two airlines widens, flight frequency and the

fare rise provided that bL is less than the marginal cost of a seat, although traffic could rise or

fall.

Given that greater product differentiation should weaken price competition between the

carriers, the emergence of a higher fare makes sense. While this logic also explains the rise

in p when µ = 1, flight frequency is unaffected by the extent of product differentiation in

this case. The difference is again explained by the existence of an air-travel/outside-option

margin when µ < 1. In this case, a higher α, by raising the upper limit of integration in (5),

initially increases the number of type-L consumers choosing air travel. This fact then induces

adjustments in f and q, although the ultimate change in traffic is ambiguous.

When bL rises, the slope of the line in Figure 1 increases, raising f . Using (11) or (14), p

then rises, as does q from (14). Since the increase in bL raises the demand for air travel among
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type-L consumers, these responses also make sense.

Finally, when µ increases, the cubic curve shifts down, while the line’s intercept shifts up

toward zero. If τ > bL, then the line’s slope rises, leading to an increase in f . In this case, (11)

and (14) show that both p and q also rise. Thus, if the air-travel benefit for type-L consumers

is low, a decline in their population share raises frequency, the fare and traffic. Otherwise, the

effects are ambiguous.

These results are summarized as follows, and in Table 1 (which also shows results for the

µ = 1 case):

Proposition 1. If the population includes some type-L consumers (µ < 1), then:

(i) Flight frequency falls with an increase in the fixed flight cost or marginal seat cost.
Frequency rises with an increase in the disutility of schedule delay (when µ is sufficiently
large), product differentiation (when τ > bL), the type-L air-travel benefit, or the share
of type-H passengers (when τ > bL).

(ii) The fare falls with an increase in the fixed flight cost. The fare rises with an increase
in product differentiation (when τ > bL), the type-L air-travel benefit, or the type-H
share (when τ > bL).

(iii) Traffic falls with an increase in the fixed flight cost. Traffic rises with an increase
in the type-L air-travel benefit or the type-H share (when τ > bL).

To provide a sense of the likely directions of those comparative-static effects that are theoret-

ically ambiguous, the next section offers some numerical examples.

3. Numerical Examples

Given the stylized nature of the model, parameter choices are necessarily arbitrary. The

requirement τ > bL from above is imposed, however, and parameters are chosen so that the

critical value of brand loyalty â above which type-L consumers undertake air travel is less

than α/2, making this set of consumers nonempty (see (5)).13 Given these requirements, the

base-case parameter values are α = 30, bL = 18, γ = 0.2, θ = 25, τ = 20, and µ = 0.5. Note

the type-L air-travel benefit is only slightly greater than the maximum brand-loyalty benefit

(equal to 15). Since bL is measured relative to the benefit g from the outside option, which

is normalized to zero, this small gap is plausible. In addition, the fixed cost θ is of the same
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order of magnitude as the marginal seat cost τ , indicating weak increasing returns, and the

type-L and type-H groups are equal in size. Note finally that the schedule-delay disutility

parameter γ has no natural connection to any of the other parameter values and can be set

independently.

Recall that the variable s, seats per flight, is determined residually via choice of f and p

(which together determine q and hence s = q/f). Since the comparative statics for s are all

analytically ambiguous, numerical results for this variable are presented along with results for

the variables f , p, q and π (profit). The first line of Table 2 shows the base case solution.

While the magnitudes of the solution values are not particularly meaningful, the remainder of

the Table shows how these values change when parameters are altered.

When the fixed cost θ increases from 25 to 26, f , p and q all decline, as in Proposition 1.

In addition, Table 2 shows that the decline in q is proportionally smaller than the decline in

f , so that s = q/f rises, indicating use of larger aircraft. This outcome makes intuitive sense

given the higher fixed cost per flight.

When the marginal cost per seat rises from 20 to 21, f falls, matching the prediction of

Proposition 1. Although the general effects are ambiguous, the fare rises and traffic falls in

the example, an outcome always observed in the computations. Note that, unlike in case of

a fixed-cost increase, which counterintuitively lowers the fare, the positive effect of a higher τ

on p matches intuition. In addition, aircraft size falls, again an intuitive outcome.

When the schedule-delay disutility γ increases from 0.2 to 0.3, frequency rises. While

Proposition 1 predicts this result when µ is sufficiently large, the assumed value of 0.5 is

evidently large enough. In addition, Table 2 shows that γ’s impacts on the fare and traffic,

ambiguous in general, are both negative in the example, an outcome that emerged in all of

the computations. Aircraft size also falls. Thus, the results suggest that a greater dislike of

schedule delay leads to more-frequent, less-expensive flights on smaller aircraft.

When product differentiation rises (with α increasing from 30 to 31), all the solution values

increase. The higher values of f , p, and q are consistent with Proposition 1 given τ > bL. Since

the increase in traffic is proportionally greater than the increase in frequency, s rises, so that

larger aircraft are used.
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When the type-L air-travel benefit bL rises from 18 to 19, all the solution values increase,

results that are again consistent with Proposition 1. Aircraft size s again rises, a conclusion

consistent with the demand increase reflected in the higher bL.

Finally, when the type-H share rises from 0.5 to 0.55, all the solution values increase, an

outcome consistent with Proposition 1 given τ > bL. Note that the increase in aircraft size

again reflects the demand increase associated with a higher µ.

As for the profit changes, all are consistent with predicted effects, which can be computed

as partial derivatives of the π function in (7), using the envelope theorem.

4. The Social Optimum

With the comparative-static properties of the equilibrium understood, attention now shifts

to welfare analysis, where a social planner chooses flight frequency and traffic. Social surplus is

computed as the sum of total utility and airline profit. Letting a∗ denote the air-travel/outside-

option loyalty margin for type-L consumers, as chosen by the planner, total utility can be

written

U = 2µ

∫ α/2

0
(y − p + bH + a − γ/f)

1

α
da

+ 2(1 − µ)

[∫ α/2

a∗
(y − p + bL + a − γ/f)

1

α
da +

a∗y
α

]
. (15)

Note that the 2 factors in (15) are needed because two airlines are present, and that the last

term inside the brackets captures utility for type-L consumers choosing the outside option.

Total airline profit is given by

2π = 2

(
(p − τ )

[
µ

1

2
+ (1 − µ)

(
1

2
− a∗

α

)]
− θf

)
, (16)

where (1−µ)(1/2−a∗/α) gives the number of type-L passengers per airline. Carrying out the

integration in (15) and adding (16), surplus is equal to

W = y + µ
α

4
+ (1 − µ)

[
α

4
− a∗2

α

]
+ µbH + (1 − µ)

[
1 − a∗

α/2

]
bL
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− (τ + γ/f)

(
µ + (1 − µ)

[
1 − a∗

α/2

])
− 2θf. (17)

Note that bL’s coefficient equals the total number of type-L passengers, so that the last two

terms in the first line of (17) give aggregate air-travel benefits. The last line gives flight costs

plus the cost of schedule delay, and the second term in the first line gives total brand-loyalty

benefits for type-H passengers (their population share times average benefits of α/4). The

third term gives the same quantity for type-L passengers.14

The first-order condition for choice of a∗ reduces to

a∗ = τ + γ/f − bL, (18)

indicating that, for the marginal type-L air traveler, the benefits from air travel and brand

loyalty are exactly balanced by the marginal seat cost seat plus the disutility from schedule

delay. The condition for choice of f is 2θ − (γ/f2)[1 − (1 − µ)2a∗/α] = 0, and substituting

(18) and rearranging, it reduces to

[
αγ/2 + (1 − µ)γ(bL − τ )

]
f − (1 − µ)γ2 = αθf3. (19)

Using these conditions, the social optimum and equilibrium are easily compared. Note

first that (19) is identical to the equilibrium condition (10) except for the absence of the 2− µ

coefficient multiplying f3. Thus, the cubic curve in (19) is lower than the cubic curve in

the equilibrium condition as long as µ < 1, while the curves coincide when µ = 1. As a

result, the socially optimal flight frequency is higher than the equilibrium frequency as long

the population contains some type-L consumers. If everyone is of type-H, the equilibrium

frequency is optimal, with both equaling
√

γ/2θ.

In addition, when µ < 1, the equilibrium number of type-L consumers undertaking

air travel is too small. To see this conclusion, recall from (4) that the equilibrium air-

travel/outside-option margin for type-L consumers equals â = p + γ/f − bL. Since p > τ

from (11) and since the equilibrium frequency is too low, it follows from (18) that a∗ < â.
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Thus, at the optimum, an additional group of type-L consumers with relatively low brand

loyalties ends up undertaking air travel. Note that when µ = 1, the entire population under-

takes air travel both at the optimum and in equilibrium, so that no consumers are inefficiently

excluded.

Summarizing these results yields

Proposition 2. If the population includes some type-L consumers, then the equilib-
rium has inefficiently low flight frequency and too few type-L air travelers. If the entire
population is of type H, then the equilibrium is efficient.

As was shown in the analysis of section 2, the comparative-static properties of the equi-

librium differ markedly between the µ = 1 and µ < 1 cases. Proposition 2 shows that the

same conclusion applies to its efficiency properties. The proposition shows that equilibrium is

inefficient only in the case where airline market power affects total traffic (i.e., when an air-

travel/outside-option margin exists). In this case, each airline has effective monopoly power

over its type-L passengers, whose next best choice is the outside option. In a familiar fashion,

this monopoly power leads to a suboptimal level of traffic and a corresponding underprovision

of frequency. By contrast, when µ = 1, the exercise of market power only affects the division of

a fixed amount of traffic between the carriers, and inefficiency disappears. In this case, airlines

exert no monopoly power over any passenger, although they can still affect the division of the

fixed traffic pool by their choices of fares and frequencies. This difference between the two

cases also accounts for the divergence in comparative-static results between them, as seen in

Table 1.

5. The Sequential-Choice Equilibrium

While the analysis in section 2 assumed simultaneous choice of fares and frequencies,

arguing that both variables are easily adjusted, it could be argued that fares can be adjusted

more quickly than frequencies. If this view is appropriate, then a sequential-choice model,

where frequency is chosen before fares, may be more realistic. In such a model, fares are

chosen conditional on frequencies in a second stage, with frequencies chosen in a first stage

taking into account their second-stage fare impacts. The outcome is a subgame perfect Nash
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equilibrium.15

To carry out the required analysis, the fare-choice condition (8) for airline 1 is supplemented

by the analogous condition for airline 2, and the two equations are solved simultaneously to

give p1 and p2 as functions of f1 and f2. The solution for p1 conditional on f1 and f2 is

p1 =
1

2 − µ2/2

[
(α/2 + τ )(1 + µ/2) − (1 − µ2/2)γ/f1 + µγ/2f2 + (1 − µ/2 − µ2/2)bL

]
,

(20)

and the p2 solution is gotten by reversing the 1 and 2 subscripts.

These solutions are then substituted into airline 1’s profit function, which becomes a func-

tion of just f1 and f2. The derivative of this function with respect to f1 is set equal to zero, and

symmetry is then imposed by setting f1 = f2 = f in the resulting equation. After substantial

manipulation, the following equilibrium condition emerges:

(αγ/2)(2 + µ) + (2 − µ − µ2)γ(bL − τ )

2 − µ2/2
f − 2 − µ − µ2

2 − µ2/2
γ2 =

(2 − µ2/2)

1 − µ2/2
αθf3. (21)

Note that this equation has the same general form as (10).

The comparative-static properties of the sequential equilibrium are summarized as follows:

Proposition 3. When µ < 1, the comparative-static effects of θ, τ , γ, α and bL on
f , p, and q are the same as in Proposition 2. The effect of an increase in µ, however,
is ambiguous.

This proposition follows from repetition of the previous arguments. The µ effect is ambiguous

because a higher µ raises the height of the cubic curve, moves the line’s intercept closer to

zero, and has an ambiguous effect on its slope.

As in the simultaneous-choice case, a simple solution emerges when µ = 1. In this case,

(21) yields

f =
√

γ/3θ, (22)

and substituting in (11), the equilibrium fare is given by

p = τ + α/3. (23)
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Note that frequency is smaller than in the simultaneous-choice case (compare (12)), and that

the fare involves a smaller markup over marginal seat cost (compare (13)).

While the sequential frequency will remain smaller, by continuity, when µ is close to 1,

this relationship cannot be established for arbitrary µ > 0. However, since the sequential and

simultaneous f ’s are identical for µ = 0,16 it seems likely that the sequential f never rises

above the simultaneous value, a conclusion that is confirmed in all of the computations.

Rather than being socially optimal, as before, the equilibrium frequency is too small in the

sequential case when µ = 1 (
√

γ/3θ vs.
√

γ/2θ). Underprovision of frequency also occurs when

µ < 1 provided that the sequential case has the smaller equilibrium f . Since the simultaneous-

choice f is then larger as well as inefficiently low by Proposition 2, the result follows. Note that

underprovision of frequency, if it occurs, would also be accompanied by inefficiently low traffic

in the sequential case, given that a∗ < â would continue to hold in the sequential equilibrium.

Summarizing the preceding discussion yields

Proposition 4. When frequencies and fares are chosen sequentially and µ = 1, the
equilibrium frequency is smaller than in the simultaneous-choice case, and numerical
results suggest that this conclusion is likely to hold when 0 < µ < 1. Under these
circumstances, the sequential-choice frequency is inefficiently low, and traffic is too
small when µ < 1.

6. Conclusion

This paper has presented a simple model of airline schedule competition that circumvents

the complexities of the spatial approach used in earlier papers. The framework also has gen-

eral applicability outside the airline context, offering a different approach to product-quality

competition than the usual vertical-differentiation model. The analysis generates a number

of useful comparative-static predictions, while also showing that equilibrium flight frequencies

tend to be inefficiently low.

While the paper has been devoted to exploring the properties of the model, the non-spatial

approach to schedule competition is ripe for applications to particular issues in the airline

industry. As mentioned above, Heimer and Shy (2006) use this type of model to study airline

alliances, and other applications might be fruitful. For example, Brueckner and Girvin (2006)
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use a version of the model to study the effect of airport noise regulation on flight frequency and

aircraft “quietness” in a competitive setting, and the model could also be used in an analysis

of airport congestion pricing.

Although the analysis is carried out in the airline context, the approach applies in other

transportation settings where scheduling matters. The model, for example, could apply to the

market for intercity bus transportation, or to any type of cargo market, where frequency of

service is often a concern of shippers. Finally, variants of the model could be used to analyze

quality competition in other industries.

18



2112 γµτγµαγ )()]()(/[ −−−−+ fbL

32 fαθµ)( −

f

Figure 1: The f solution



Table 1
Comparative-Static E¤ects
(� = 1 case in parentheses)

Variable
Parameter f (freq.) p (fare) q (tra¢ c)

� (�xed cost) � (�) � (0) � (0)
� (seat cost) � (0) ? (+) ? (0)
 (delay disutility)* + (+) ? (0) ? (0)
� (product di¤erentiation)** + (0) + (+) ? (0)
bL (type-L bene�t) + (0) + (0) + (0)
� (type-H share)** + (0) + (0) + (0)

* � < 1 e¤ects require � su¢ ciently large.
** � < 1 e¤ects require � > bL.



Table 2
Numerical Examples for the Simultaneous Case

Cases f (freq.) p (fare) q (tra¢ c) s (seats) � (pro�ts)
Base 0:046 27:880 0:263 5:730 0:923

�" (� = 26) 0:045 (�) 27:847 (�) 0:262 (�) 5:831 (+) 0:886 (�)
�" (� = 21) 0:045 (�) 28:510 (+) 0:250 (�) 5:594 (�) 0:761 (�)
" ( = 0:3) 0:055 (+) 27:509 (�) 0:250 (�) 4:567 (�) 0:509 (�)
� " (� = 31) 0:046 (+) 28:219 (+) 0:265 (+) 5:757 (+) 1:028 (+)
bL" (bL= 19) 0:047 (+) 28:245 (+) 0:275 (+) 5:861 (+) 1:094 (+)
�" (� = 0:55) 0:047 (+) 28:414 (+) 0:280 (+) 5:921 (+) 1:175 (+)

Base case: � = 25; � = 20;  = 0:2; � = 30; bL= 18 and � = 0:5:
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1Estimates by Morrison and Winston (1995) show that the increase in flight frequencies
following U.S. airline deregulation has generated cumulative consumer benefits in excess of
$10 billion, testifying to the importance of airline scheduling decisions.

2Using a spatial approach, Brueckner and Zhang (2001) analyze a scheduling model for a
monopoly airline, with the goal of understanding how network structure affects flight fre-
quencies. By contrast, Panzar (1979) uses a spatial model to analyze frequency equilibria
when each airline operates a single flight. Since free entry along with a zero-profit condition
determines equilibrium flight frequency, his model does not depict schedule competition.
Salop (1979) presents a similar but more-general model of monopolistic competition in a cir-
cular spatial market. Firm locations are interpreted as product brands, but they could also
be viewed as flight departure times in the case where each airline offers a single flight. In an-
other analysis of scheduling, Encaoua et al. (1996) analyze the strategic choice of departure
times for two airlines when one relies on connecting traffic from the other.

3Schedule delay is the difference between the preferred and actual departure times.

4The variation in brand loyalty across consumers could be viewed as adding a spatial element
to the model, but the key to the analysis is its nonspatial treatment of flight frequencies.

5See Choi and Shin (1992) and Wauthy (1996) for more-recent contributions.

6Heimer and Shy (2006) assume that consumer utility equals f−p plus a brand-loyalty element
that, though different in form, is ultimately equivalent to that in the present specification.
While convenient, the linear form of f in their utility function is difficult to justify from first
principles.

7While a represents the gain from traveling on airline 1 relative to airline 2, the above condition
requires measurement of the absolute gain from traveling on 1. For an easy transition
between the relative and absolute cases, it is assumed that when a > 0, the absolute gain from
using airline 1 equals a itself while the absolute gain from airline 2 equals zero. Conversely,
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when a < 0, the absolute gain from airline 1 equals 0 while the absolute gain from airline 2
equals a itself.

8If both bH and bL are sufficiently large, the airline 1-2 margin could be relevant for both
the type-H and type-L groups, or the air-travel/outside-option margin could be relevant for
both groups if both benefit levels are low. However, the relevant margins for the groups
cannot be the reverse of the ones assumed in the text. In contrast to the present setup,
Heimer and Shy (2006) assume homogeneous travel benefits and distinguish between two
types of equilibria: one where all consumers undertake air travel and the relevant margin is
between airlines 1 and 2, and another where the margin is between air travel and the outside
option. Although some of the details are different, Brueckner (2004) effectively considers
this latter case, where each airline operates as a monopolist.

9By contrast, Heimer and Shy (2006) assume that the cost per flight is given by θf + τs, so
that fixed cost is increasing in the number of flights, a specification that could be viewed as
less natural than the present one.

10Alternatively, a single intersection (representing a tangency) might arise, or no intersection
might occur in the positive quadrant, in which case a meaningful solution does not exist.
To see that the second intersection is relevant when two intersections are present, note that
positivity of the Hessian determinant can be shown to require p−τ−γ/4f > 0 or 4αθf3 > γ2

using (9) (the firm subscript is dropped). Then observe that, for the second intersection to
be relevant, the slope of the cubic curve must exceed the slope of line at the solution, so
that (2− µ)3αθf3 > [αγ/2 + (1− µ)γ(bL − τ )]f . Substituting on the RHS of this inequality
from (10), and rearranging yields [(2 − µ)/(1 − µ)]2αθf3 > γ2. Since (2 − µ)/(1 − µ) ≥ 2,
the positive-determinant condition implies satisfaction of this last inequality, yielding the
desired conclusion.

11For all type-H consumers to undertake air travel while some type-L consumers do not, the
inequalities bL < p+γ/f < bH must hold. When µ = 1, only the second of these inequalities
is relevant, and substituting from (12) and (13), it reduces to τ + α/2 +

√
2γθ < bH . Since

closed-form f and p solutions are not available when µ < 1, the inequalities in bL < p+γ/f <
bH cannot be rewritten in terms of parameter values in this case. However, when µ is close
to 1, the p and f solutions will be close to those in (12) and (13). As a result, it follows
that, if bL lies well below τ + α/2 +

√
2γθ while bH lies well above it, the assumed type-H

and type-L travel patterns will emerge when µ is close to 1.

12To see this conclusion, subtract the RHS of (10) from the LHS and differentiate the resulting
expression (call it Ω) with respect to α, which yields (γ/2)f − (2− µ)θf3. If this expression
is negative or zero, then inspection of (10) shows that Ω itself must also be negative as long
as τ > bL, when in fact Ω = 0 must hold at a solution. Therefore, the above derivative
must be positive when τ > bL, indicating that Ω is increasing in α. This conclusion in turn
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implies that f is also increasing in α when τ > bL.

13Recalling that â = p + γ/f − bL and using (14) to eliminate p, this requirement translates
into the inequality [(1−µ)αγ/2+γ(bL−τ )]f−γ2 > 0. Note that while the LHS of condition
(10) must be positive at a solution, the latter condition is more stringent. In other words,
its satisfaction implies positivity of the LHS of (10), but not vice versa.

14The term in brackets equals average type-L loyalty benefits, 2
∫ α/2
a∗ (a/α)da.

15Heimer and Shy (2006) analyze the sequential case.

16When µ = 0, the airlines are pure monopolists, which means that sequential and simultaneous
choices of p and f must give the same solutions.
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