Consumer Search and Propensity to Buy

Ofer Mintz

Imran S. Currim

Ivan Jeliazkov*

July 2010

* Ofer Mintz (omintz@uci.edu) and Imran S. Currim (iscurrim@uci.edu) are doctoral student in marketing and Chancellor’s Professor respectively at the Paul Merage School of Business, and Ivan Jeliazkov (ivan@uci.edu) is Assistant Professor of Economics, all at the University of California, Irvine, CA 92697. We thank Decision Tactics for providing the data and participants at the 2009 INFORMS Annual Meeting, 47th Annual Edwards Bayesian Conference, and the Paul Merage School of Business Brown Bag Series for helpful comments. The first author acknowledges partial financial support provided by a summer grant from the Institute of Mathematical Behavioral Sciences (IMBS) at the University of California, Irvine.
Consumer Search and Propensity to Buy

ABSTRACT

This article investigates the association between consumers’ pattern of information search and their propensity to buy in a field setting. We expect that a consumer whose information search pattern is skewed towards alternative-based search will have a greater propensity to buy than a consumer whose search pattern is skewed towards attribute-based search. In addition, we examine whether the price range selected by a consumer influences their subsequent pattern of search. To address these questions, we consider several empirical models that allow us to account for endogeneity and simultaneity in the relationship between pattern of information search and propensity to buy. The results confirm our expectations. The implication is that a manager can now identify a consumer who has a higher propensity to buy while that consumer engages in information search prior to a purchase commitment, an important first step in targeting decisions.

Keywords: Choice Modeling; Digital Strategy; Information Processing; Latent Variable Simultaneous Equations Model; Markov Chain Monte Carlo (MCMC).
INTRODUCTION

Consumers face daily decisions and trade-offs regarding products they want to buy and often search for information, particularly in durable product categories, to aid their decisions. The digital revolution has significantly enhanced consumers’ accessibility to information and hence the value they derive from it (Shapiro and Varian 1999, p. 8). As a result, more than 140 million consumers, almost 50% of the total US population, incorporate digital information into their shopping habits (Mendelsohn et al. 2005). While the digital revolution enhances consumers’ accessibility to various types of information, in this paper we are mainly interested in objective product information across product alternatives and attributes and focus on a consumer’s information search or processing pattern when such information is available.

When evaluating product alternatives across attributes, Bettman (1979, p. 178) indicates that two basic forms of information processing used by consumers are (1) Choice by Processing Brands, when consumers process the available information by examining specific products across attributes (what we call an alternative-based search pattern) and (2) Choice by Processing Attributes, when consumers process the available information by examining specific product attributes across alternatives (an attribute-based search pattern). Consumers could, of course, process the available information using any mix of the two basic patterns, which raises a logical question: If a consumer searches through product information using one pattern to a greater extent than another, would s/he be more, less, or equally likely to buy a product? This is the central question that motivates the current study.

1 We use the words search and process interchangeably. This is consistent with Bettman (1979, p. 33) who indicates that processing “rules are probably developed simultaneously with search.”
Several well-known websites such as Dell, CNET, and Apple offer the consumer a choice to search using alternative-based, attribute-based, or any mix of alternative- and attribute-based patterns. For example, the Apple website menu allows consumers who are mainly interested in the iPod classic to click on the product and be directed to a page that describes only that product in detail (see Figure 1 for a largely qualitative version and Figure 2 for a largely quantitative version). The website also allows consumers who are interested in comparing Apple’s several iPod models across attributes to get the information in a format that facilitates that comparison (see Figure 3). These pages provide the consumer the ability to search for their preferred model using any mix of the two basic patterns.

A key challenge for commercial websites is conversion, i.e., converting visitors to buyers. This is an area in which industry-wide metrics have not budged. Since 2001 shopping cart abandonment rates have hovered at a steady 50%, while website conversion rates have never exceeded 3.2% (Mulpuru, Graeber, and Hult 2007). If we can determine which basic search pattern is more likely to result in a purchase, managers will be able to better design the presentation of their products and target their marketing efforts to consumers who are more likely to purchase while these consumers engage in search prior to a purchase. For example, if consumers who are primarily using alternative-based search are found to have a higher propensity to purchase than consumers primarily using attribute-based search, managers could ask consumers to specify their must-have and unacceptable features, and if required, limited information on the tradeoffs they are willing to make across product attributes, so that they can be presented with one alternative, or one alternative at a time, that is customized to their
requirements. And if these consumers abandon their search or shopping carts, they can be prioritized, ceteris paribus, over consumers who use mainly attribute-based search for the purpose of follow-up communications. The ability to target consumers who are more likely to buy prior to their making a purchase commitment is of utmost importance for e-commerce website managers. Even small changes in conversion can result in significant increases in sales revenue. In addition, any research results that can aid presentation decisions made by e-commerce retailers will indeed be timely. The majority of e-retailers surveyed in a recent industry report by Mulpuru, Johnson, and Hult (2008) indicate that they intend to focus on improving the effectiveness of their product detail pages (90%) and search result pages (87%).

Second, we investigate how the price category that shoppers choose affects their information processing pattern. Shoppers that limit themselves to the lowest price category will have fewer options than those that are not limited to that category. Consequently, the choice of a particular price category could influence the type of search conducted. If shoppers who choose a low price category engage in alternative-based search, managers could use the price category selected by consumers as an important proxy for segmenting their customer base. While segmenting consumers based on the basic information search pattern used requires tracking and computations, as we demonstrate later, segmenting consumers based on the price category selected for search is easier to implement since the price category selected is easily observed.

Next we provide background, followed by the development of expectations on the association between search patterns and propensity to buy. We then briefly describe the Decision Board Platform (Mintz et al. 1997), similar to the Mouselab program (Payne,
Bettman, and Johnson 1988) which was installed on an internet retailer's website to collect data. This material is followed by a presentation of our model, estimation methodology, and results. The paper concludes with a summary of the managerial implications and discussion of potential avenues for further research.

BACKGROUND

Information Processing

The information processing literature has provided important contributions on the conditions under which consumers are likely to employ alternative-based, attribute-based, or a mix of alternative and attribute-based processing patterns. For example, laboratory studies have investigated the effect of individual differences (e.g., novices vs. experts), specific properties of the choice task being undertaken (e.g., complexity of the choice task as in the number of alternatives and attributes, and dissimilarity of options), and the type of choice situation (e.g., whether it involves emotion, time pressure, or a certain type of information display). The reader is referred to Bettman (1979), Payne, Bettman, and Johnson (1993), and Bettman, Luce, and Payne (1998) for a review and details. Less attention has been paid to studying how processing patterns affect purchase decisions. To the best of our knowledge, this paper is the first to explore this relationship in a field setting.

Linking the use of information processing patterns to propensity to buy serves as an important first step towards understanding the implications of the conditions studied historically in the information processing literature, for purchase behavior. For example, if complex task environments make it more likely that a consumer will use an attribute-based processing pattern over an alternative-based processing pattern and furthermore,
we find that a consumer who is more likely to use an attribute-based processing pattern has a lower propensity to purchase, the implication will be that managers should attempt to simplify the task environment faced by the consumer to facilitate purchase. Such examples abound in business practice – for instance, the Apple website recommends a particular iPod for a certain type of use, e.g., the iPod shuffle for clipping a light-weight model to a sleeve, belt, or gym shorts (for ultra-portability), the iPod nano for those who want to shake, shuffle, and roll (mainly music lovers), the iPod classic for music, movies, TV shows, games, podcasts, and audio books, and the iPod touch to have fun with the Internet, games, video, and songs.

Models of Consumer Choice Based on Scanner Panel Data

In contrast, household-level scanner panel-based data studies that examine choices of consumers in retail environments (e.g., Guadagni and Little 1983; see Abramson, Andrews, Currim, and Jones 2000 for a review and details), have provided important insights on the effects of brand names, prices, promotions, and consumer characteristics, on propensity to purchase. In these settings, however, search patterns are unobserved, so it is not possible to investigate how purchase behavior is influenced by search.² In contrast, on e-commerce websites such as Dell, Apple, etc., consumers today are able to search for information and purchase products, and managers can use technology to observe some of their search patterns, so that it is now possible to explore the relationship between search and propensity to purchase.

Effect of Propensity to Buy on Search

² Some studies incorporate consideration sets based on previous purchases (see Abramson, Andrews, Currim, and Jones 2000).
While the type of search conducted could influence the propensity to buy, it is conceivable that propensity to buy may also influence the type of search conducted. For example, a consumer under time pressure to purchase a new digital camera for use on their child’s birthday or an upcoming vacation may conduct a search which is more limited than it would have been in the absence of time pressure. In their laboratory-based work on choice deferral, Dhar and colleagues (see Dhar and Nowlis 2004 for a review and details) find that when subjects are in a buy-no buy decision response mode (versus an unconditional brand-choice response mode), decision processes will more likely be characterized by alternative-based evaluations. Consequently, our analysis must allow not only for endogeneity, but also for simultaneity in the relationship between search and propensity to buy. If these aspects are not explicitly accounted for, the models could be fundamentally mis-specified yielding biased parameter estimates and misleading managerial implications. To deal with these concerns, we develop a new Bayesian simultaneous equation model for discrete (buy vs. do not buy) and censored (search pattern) data and propose a new simulation-based estimation method that overcomes the intractability of the likelihood function in this setting.

Consumer Information Search

Consumer search has been studied in the context of two basic paradigms, the psychological model of information processing, and the economic model of search. The first paradigm is based on constructs such as beliefs and attitudes, involvement (e.g., Beatty and Smith 1987) and knowledge (e.g., Urbany, Dickson, and Wilkie 1989) and provides excellent descriptions of the psychological processes that accompany search. The second paradigm weighs the costs and benefits of search when making search
decisions (e.g., see Moorthy, Ratchford, and Talukdar 1997 for a review). For example, Moorthy, Ratchford, and Talukdar (1997) study how brand uncertainty, product class involvement, risk aversion, search cost, and experience affect the total amount of search conducted in the automobile category. In our field setting, as is the case in a large variety of commercial websites, consumer variables described above are typically unobserved. As a result, we are not able to study the important insights offered by these two streams of studies. On the other hand, however, search and purchase are observable in our field setting and other commercial websites so that there is a potential that our analysis could be valuable to managers of a large number of commercial websites.

Models of Internet Conversion Based on Clickstream Data

A few works have investigated consumer conversion (i.e., converting store visits into purchases) on the internet by proposing empirical models which have provided important insights. For example, Moe and Fader (2004) posit a model that decomposes an individual’s conversion into two components, one for accumulating visit effects (e.g., visits for purchasing vs. visits for hedonic browsing) and another for purchasing threshold effects (e.g., the psychological resistance to online purchasing that evolves with purchasing experience on a given website), and find evidence for both effects in the context of book purchasing at Amazon. Moe (2006) follows up by proposing a two-stage choice model, products viewed and products purchased, and finds that in the earlier stage consumers use simpler decision rules on a subset of attribute information (screening attributes), while ingredient attributes (of nutritional products) are used in both stages (screening and purchase).
Montgomery, Li, Srinivasan, and Liechty (2004) categorize and model the path information at the Barnes and Noble site. They find that the memory component of their model is crucial in accurately predicting a path and after only six viewings, purchaser can be predicted with more than 40% accuracy. Sismeiro and Bucklin (2004) decompose the purchase process into the fulfillment of three tasks, complete product configuration (details of the automobile desired), inputting personal information, and completing the order, and find that their approach better identifies likely buyers relative to a single-stage benchmark. Less attention has been paid to the search or information processing pattern that a consumer uses, that is, whether the consumer searches for or processes information primarily across- or within-brands and how such search or processing patterns are associated with purchase.

Website Morphing

Hauser et al. (2009) provide an innovative model for website morphing which involves automatically matching the basic look and feel of a website, not just content, to cognitive styles. Cognitive style is a person’s preferred way of gathering, processing, and evaluating information. For example, impulsive visitors might prefer less detailed information (e.g., fewer alternatives, fewer attributes, or easy to comprehend general content on overall comparisons), whereas deliberative visitors might prefer more information. And, the more focused morph might appeal to visitors that are holistic, while the ability to compare many options in a table might appeal to analytic visitors. They show that morphing based on cognitive style can increase purchase intentions by 20% on the former British Telecom site. Our study is similar in spirit but different in scope. We identify the nature of a customer’s information search or processing and connect it to
purchase. Specifically, we focus on the second of the four technical challenges they identify, that is even if we know a customer’s search, processing, or cognitive style, website managers must learn which characteristics are best for which customers in terms of sales and profit.

EXPECTATIONS

Building on prior research on information processing, search, and behavioral decision theory, we now propose several hypotheses linking the search pattern that consumers employ and their propensity to buy. Figure 4 illustrates our conceptual framework.

Ifluence of Information Search Pattern on Propensity to Buy

Previous research has demonstrated that product preferences are often constructed whenever one is searching through a website (Mandel and Johnson 2002), i.e. they are frequently assembled and not just revealed when making a decision (Bettman 1979; Bettman and Park 1980; Bettman, Luce, and Payne 1998; Häubl and Murray 2003; Tversky, Sattah, and Slovic 1988). Therefore, the specific search pattern that a consumer uses to assess product information can influence their propensity to buy.

In particular, we hypothesize that consumers whose search is more alternative-based will be more inclined to purchase a product than consumers whose search is more attribute-based. Consumers who search in an alternative-based pattern assess products individually in isolation or one-at-a-time so that they are able to judge whether that product’s features meet their baseline purchasing criteria, with less distraction about whether another competitive product is better (Dhar and Nowlis 2004). As a result, these consumers develop more accurate representations of the products (e.g., Payne, Bettman,
and Johnson 1993) and are better able to judge the overall suitability of each product they examined. Thus, at the conclusion of their search, consumers who search in more alternative-based patterns are more certain of whether a product can be purchased.

Furthermore, consumers often engage in alternative-based search to not even allow the possibility of trade-offs. For example, alternative-based search occurs when consumers perceive an item or brand as superior to other available options. This results in a simple preference validation based search process to ensure that the product they have a preconceived superior perception of does not have any negative properties that discourage purchasing it (Iyengar and Lepper 2000; Moorthy, Ratchford, and Talukdar 1997). Alternative-based search also occurs following a process Simon (1956) identifies as “satisficing”, in which alternatives are considered sequentially and the value of each attribute of the alternative is considered to determine whether it meets a pre-determined minimum cutoff level. If any attribute fails to meet the minimum cutoff level, the option is rejected and the next alternative is considered until an option is found in which all attributes meet their minimum cutoff levels.

On the other hand, shoppers whose search is more attribute-based directly compare alternatives to determine for example, which alternative is best on each attribute. If only one attribute is important, such a lexicographic search strategy can be useful. However, in many product categories, and durable product categories in particular, typically more than one attribute is important (e.g., various quality attributes and price). As a result, choice can become more difficult since the consumer usually has to confront the fact that in order to purchase a product that is superior on a particular attribute, certain other superior features of competitive products must be sacrificed. Thus, after completing
search, shoppers who search is more attribute-based may have a more difficult time
deciding which product is best for them, and consequently be less likely to purchase.

H1: Consumers engaging in more alternative-based search will have a
greater propensity to buy than consumers exhibiting more attribute-
based search.

Alternatively, one could argue that attribute-based search increases the
certainty that a particular alternative is the “optimal” alternative since the shopper is able
to make a judgment about the alternative relative to competitive alternatives, and that
such increased certainty results in a greater propensity to buy. In such a case H1 would
not be supported.

Influence of Propensity to Buy on Information Search

Although we have just described several reasons for why the pattern that consumers
utilize to search can influence their propensity to buy, one could theorize that a
consumer’s propensity to buy could influence their pattern of search. For example, a
consumer who has a high propensity to buy is more likely to know what product or brand
they want, the price they want to pay, or features they are most interested in (e.g., Hauser
and Wernerfelt 1990; Ratchford 1982; Roberts and Lattin 1991; Simonson, Huber, and
Payne 1988). These shoppers use such prior knowledge to efficiently screen out
alternatives and subsequently evaluate each remaining alternative in more detail (e.g.,
Alba et al. 1997). Thus, shoppers may have completed what resembles the first stage of
Poliheuristic theory, by which alternatives are ruled out using easier to execute non-
compensatory attribute-based processing methods. This first stage is followed by a
second stage in which remaining alternatives are assessed using more compensatory
In addition, in their laboratory-based work on choice deferral, Dhar and colleagues (see Dhar and Nowlis 2004 for a review and details) find that when subjects are in a buy-no buy decision response mode (versus an unconditional brand-choice response mode), decision processes will more likely be characterized by alternative-based evaluations. Their theoretical account suggests that a focus on the buy/no-buy decision activates greater use of alternative-based evaluations (i.e., whether an option is acceptable), making purchase deferral more sensitive to the valence of shared features and category reference information. That is, when alternatives are being evaluated in the buy/no-buy mode, shared (unique) good features will lead to lower (higher) deferral than in the unconditional brand-choice response mode. The greater alternative-based evaluation makes it easier for shoppers to compare the options with a category reference (e.g., Kalyanaram and Winer 1995) which can be based on previous experience or externally available information that provides a natural frame of comparison (Bettman and Park 1980).

H2: Consumers who have a higher propensity to buy are more likely to engage in alternative-based search.

Alternatively one could argue that consumers with a higher propensity to buy will be more likely to employ attribute-based search in order to ensure that the product is “optimal” relative to competing alternatives. In such a case H2 will not be supported. Because H1 and H2 are not mutually exclusive the relationship between search and propensity to buy is conceptualized as being simultaneous as depicted in Figure 4.

Influence of Price on Information Search

In their work on the impact of information and learning on consumer choice, Tellis and Gaeth (1990) identify three strategies that consumers use to make choices,
price aversion, best value, and price-seeking. Price aversion involves choosing the lowest price alternative to minimize immediate cost. Best value involves choosing based on price and expected quality. Price-seeking involves choosing the highest price alternative to maximize expected quality. The three choice strategies originate from three different theoretical perspectives. Price aversion originates from the theory of risk aversion which is based on a consumer’s preference for a more certain prospect over a more uncertain one even if the expected values of the two prospects are similar (e.g., Kahneman and Tversky 1979; Thaler 1980, 1985). Best value originates from the economic theory of rationality, principles which describe the normatively best or utility maximizing choice (e.g., von Neumann and Morgenstern 1944; Lancaster 1966). Price-seeking originates from the theory of inference, how consumers infer a missing attribute such as quality from price (e.g., Leavitt 1954; Monroe and Petroshius 1981; Zeithaml 1988).

We expect that price sensitive shoppers or consumers with stringent budget constraints will choose to search in the lowest price category and will largely employ price aversion strategies which involve identification of the lowest price alternative(s) (e.g., Tellis and Gaeth 1990) followed by an alternative-based evaluation strategy to ensure that the option does not have any negative features that detract from purchase (Simon 1956). The theoretical rationale is simply that the consumer is minimizing expenses or losses that are certain.

In contrast, less price sensitive shoppers will consider higher priced options and largely employ best value and price-seeking strategies. Tellis and Gaeth (1990) indicate that when more information is available on relevant attributes, consumers will be able to employ the best value strategy. However, when there is missing information on relevant
attributes, consumers will be more likely to employ price-seeking strategies. Digital
information has generally facilitated consumer access to information on relevant
attributes so that if such information is accessed the consumer will be able to engage in
attribute-based search in order to identify the best value option.

H3: Consumers who shop in higher priced categories are more likely to employ
attribute-based search than consumers who shop in the lowest price category.

EMPIRICAL ANALYSIS

Data

To test our theoretical hypotheses, the Decision Board Platform (Mintz et al. 1997), a computerized decision process tracing program similar to Mouselab (e.g.,
Johnson, Payne, and Bettman 1988), that has been used in a variety of research fields
such as political science, engineering safety, and business decision making, in both on-
and off-line environments, was installed on the website of a popular computer
manufacturer/retailer. Shoppers who visited the website over a 50 hour period during a
weekend chose a price category to shop and were able to compare 3 products at-a-glance
(presented in columns) on 11 product features including price (presented in rows). The
feature values in the corresponding cells were hidden and shoppers were instructed to
click on cells that were important to them. Subsequently, they had the option to either
buy a specific product or “Customize and Buy”. The Decision Board Platform keeps
track of the information cells accessed and the final decision of each shopper. The search
pattern of 920 shoppers (visitors who had more than one click), who were unaware that
their actions were to be analyzed for an experiment, were recorded.

Measures
Information processing patterns. The measure PATTERN (Payne, Bettman, and Johnson 1988) was employed to measure the extent to which shoppers used alternative-based versus attribute-based search. PATTERN is constructed as a ratio, the numerator is the number of alternative-based transitions minus the number of attribute-based transitions, and the denominator is the number of alternative-based transitions plus the number of attribute-based transitions. The resulting scores are censored – i.e. they range from -1.0 to +1.0, with lower numbers representing more attribute-based processing patterns, and exhibit point-masses at both ends of the range \([-1,1]\).³

Propensity to buy and Price category. Propensity to buy was recorded as a binary variable, 0 or 1, with 1 indicating that a shopper chose a product. Shoppers entered two price categories to conduct their search, low (less than $999) and high (more than $999).

Overview

Of the 920 shoppers who visited the website, 293 exhibited attribute-based search behavior (had a negative PATTERN score), 612 were alternative-based searchers (had positive PATTERN score), and 15 exhibited neutral search behavior with a PATTERN score of 0. Among the website shoppers, 596 chose to search in the low price category, while 324 searched in the high price category. In addition, 438 shoppers proceeded to buy or customize and buy and 482 did not. Among the shoppers who used the alternative-based strategy, 52% (319 out of 612) proceeded to buy or customize and buy. Similarly, among the shoppers who used the attribute-based search strategy, 40% (119 out of 293) proceeded to buy or customize and buy. Of the 596 shoppers who chose to shop in the low price category, 441 (or 74%) used alternative-based search, while among the 324

³ As a robustness check, variations on the measure PATTERN were also considered in the subsequent analysis, but the results did not reveal any major qualitative differences.
shoppers in the high price category, 171 (or 53%) used alternative-based search. Overall, the data set exhibits sufficient variability over the constructs being investigated.

Model

Overview. We now present an econometric model that is specifically tailored to the setting considered in this paper. The model is intended to accommodate three particular aspects of the problem at hand. First, our model accounts for the discrete nature of the dependent variables – in particular, propensity to buy is a binary indicator variable, while our measure of search behavior is censored on the interval \([-1,1]\) and exhibits point mass at both endpoints. To deal with this difficulty, our modeling and estimation approach relies on data augmentation techniques (Chib 1992; Albert and Chib 1993) which allow the model to be written in terms of a threshold-crossing latent variable representation that greatly facilitates estimation. A second issue we address is the potential for endogeneity and simultaneity in search behavior and propensity to buy. If these potential features of the theory are not accounted for in the model, they could render it severely mis-specified. Models with endogeneity and simultaneity, however, have been difficult to estimate when the dependent variables of interest are not continuous because standard two-stage estimators are inapplicable in this context. Third, we specifically account for model uncertainty by discussing methods for model comparison based on marginal likelihoods and Bayes factors. These techniques allow us to consider the extent to which the data support the hypotheses about price categories, information search and propensity to buy presented earlier.

Specification. For consumer \(i = 1, \ldots, n\), the general specification we consider is given by the following bivariate system:
where y_{iIS}^* and y_{iPB}^* are the latent variables underlying information search and propensity to buy, respectively, and x_{i1} and x_{i2} are exogenous covariates with corresponding parameter vectors β_1 and β_2. For estimation purposes, the model can also be written in any of the following equivalent forms

$$Ay_i^* = X_i\beta + \varepsilon_i, \quad \text{or} \quad y_i^* = A^{-1}X_i\beta + A^{-1}\varepsilon_i,$$

where

$$A = \begin{pmatrix} 1 & -\theta_1 \\ -\theta_2 & 1 \end{pmatrix}, \quad y_i^* = \begin{pmatrix} y_{iIS}^* \\ y_{iPB}^* \end{pmatrix}, \quad X_i = \begin{pmatrix} x_{i1}' \\ 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, \quad \text{and} \quad \varepsilon_i = \begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \end{pmatrix}.$$

The observed information processing pattern, y_{iIS}, relates to the latent measure of information search y_{iIS}^* through the two-sided censored (Tobit) relationship

$$y_{iIS} = \begin{cases} -1 & \text{if } y_{iIS}^* \leq -1 \\ y_{iIS}^* & \text{if } y_{iIS}^* \in (-1,1), \\ 1 & \text{if } y_{iIS}^* \geq 1 \end{cases}$$

while the binary product selection indicator, y_{iPB}, relates to the latent propensity to buy y_{iPB}^* through the (probit) relationship $y_{iPB} = 1\{y_{iPB}^* > 0\}$, where $1\{\cdot\}$ is the indicator function. In the foregoing system of simultaneous equations, the errors follow

$$\begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \end{pmatrix} \sim N(0,\Omega), \quad \text{where} \quad \Omega = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix},$$

is a symmetric positive definite matrix that incorporates the usual unit variance restriction in binary data probit models. In the specific application that we consider, the vector of
exogenous covariates x'_i contains an intercept and a dummy variable for price category, while x'_{i_2} contains an intercept term.

Let $y_i = (y_{i_is}, y_{i_{ipg}})'$, $y = (y'_1, \ldots, y'_n)'$, and $y^* = (y''_1, \ldots, y''_n)'$, and let $\psi = (\beta, \theta, \omega)$ represent the vector of model parameters, where ω contains the unique unrestricted elements of Ω. The likelihood function

$$f(y | \psi) = \prod_{i=1}^n f(y_i | \psi)$$

For this the model requires multivariate integration to obtain each likelihood contribution

$$f(y_i | \psi) = \int_{S_i} f(y^*_i | \psi) dy^*_i,$$

where S_i is the feasible region defined by the mapping between y^*_i and y_i. This feature complicates estimation by maximum likelihood methods. However, using techniques introduced in Chib (1992) and Albert and Chib (1993), estimation can be accomplished in a Bayesian simulation-based framework that specifically introduces the latent $\{y^*_i\}$ into the estimation algorithm. Bayesian estimation is also useful because it provides finite sample inferences and enables comparisons of nested and non-nested models.

Specifically, Bayesian model comparison proceeds on the basis of the posterior model probabilities for the set of competing models, where for any two models M_j and M_k, the posterior odds are defined as

$$\frac{\Pr(M_j | y)}{\Pr(M_k | y)} = \frac{\Pr(M_j) f(y | M_j)}{\Pr(M_k) f(y | M_k)}.$$

The first fraction on the right hand side of this equation is known as the prior odds ratio, while the second fraction is known as the Bayes factor. This expression makes it clear...
that the posterior odds incorporate both sample information (because the Bayes factor depends on the data) and non-sample information (through the prior odds that could be based on theoretical considerations, evidence from earlier studies, etc.). Of central importance in determining the Bayes factor is the quantity \(f(y | M_i) \), known as the marginal likelihood, which is defined as integral of the likelihood function \(f(y | \psi_i, M_i) \) with respect to the prior density \(\pi(\psi_i | M_i) \), i.e.,

\[
f(y | M_i) = \int f(y | \psi_i, M_i) \pi(\psi_i | M_i) d\psi_i.
\]

Several important properties of this framework deserve attention. Marginal likelihoods and Bayes factors lead to finite sample model probabilities and do not require that the competing models be nested. These properties are in contrast to other model comparison criteria, such as the likelihood ratio test, which are justified only asymptotically (as \(n \to \infty \)) and are only useful in comparing nested models. As shown by Schwarz (1978), Bayes factors have appealing asymptotic properties and in large samples give rise to the Schwarz Information Criterion (SIC), also known as the Bayes Information Criterion (BIC). Reviews are given in Greenberg (2008, Ch. 3) and O’Hagan (1994, Ch. 3). It is also interesting to note that the marginal likelihood can be viewed as a measure of sequential out-of-sample predictive fit that evaluates how well the model predicts the observed data one observation at a time. This can be seen by writing

\[
f(y | M_i) = \prod_{i=1}^{n} f(y_i | \{y_j\}_{j<i}, M_i)
\]

\[
= \prod_{i=1}^{n} \int f(y_i | \{y_j\}_{j<i}, \psi_i, M_i) \pi(\psi_i | \{y_j\}_{j<i}, M_i) d\psi_i,
\]

where the first line uses the law of total probability to represent the marginal likelihood as the product of \(n \) sequential predictive densities, and the second line offers an
equivalent representation that is quite instructive. Specifically, it shows that the adequacy of a model, as captured by its marginal likelihood, corresponds to its cumulative out-of-sample predictive record, in which the predictive fit of observation i is measured with respect to the posterior density based only on information up to the ith data point (a thorough discussion is offered in Geweke 1999). Thus, marginal likelihoods formally capture the idea behind out-of-sample prediction comparisons often used in empirical work. When such comparisons are performed, the available data set is split into an estimation sample, used to provide parameter estimates, and a comparison (or validation) sample, where the predictions formed using these parameter estimates are compared with the actual observations.

Under the prior distributions $\pi(\beta) = N(\beta | \beta_0, B_0)$, $\pi(\theta) = N(\theta | \theta_0, \Theta_0)$, and $\pi(\Omega) \propto IW(r_0, R_0)1\{\Omega_{22} = 1\}$, we develop a Markov chain Monte Carlo (MCMC) estimation algorithm which proceeds by recursively sampling from the full-conditional distributions of the parameters θ, β, and Ω, and the latent data $\{y_i^*\}$. The latent $\{y_i^*\}$ are specifically introduced in the MCMC algorithm in order to facilitate estimation (Chib 1992; Albert and Chib 1993). Algorithm 1 in the Appendix presents details on the MCMC simulation approach. To gauge the empirical relevance of the benchmark simultaneous equations model and cast light on the hypotheses presented earlier, we also examine several alternative model specifications. These competing models are compared on the basis of their marginal likelihoods which are computed using the techniques of Chib (1995) and Chib and Jeliazkov (2001).

Results
Parameter estimates for the benchmark simultaneous equations model M_1 are presented in Table 1. Inferences are based on an MCMC simulation run of length 50,000 draws, following a burn-in cycle of 5,000 draws. We begin with a discussion of hypothesis H3 because it is the most straightforward among the three hypotheses that we consider. We then focus on H1 and H2, and provide additional evidence and model comparisons to address the issues that arise in the analysis of these two hypotheses.

The results in Table 1 suggest that hypothesis H_3, which asserted that shoppers in the higher-price category are more likely to engage in attribute-based search (leading to lower values of y_{iLS} and y_{iPB}), is supported by the data. Specifically, the coefficient on the price category covariate, β_2, has a posterior mean of -0.76 with a posterior standard deviation of 0.17. Because of the simultaneity between y_{iLS} and y_{iPB}, the correlation in the errors, and the non-linearity in the relationship between $y^*_i = (y^*_i, y^*_i)$ and $y_i = (y_{iLS}, y_{iPB})'$, interpretation of the magnitude of β_2 in practical terms is not straightforward. However, the simulation techniques presented in Chib and Jeliazkov (2006) and Jeliazkov et al. (2008) allow for uncomplicated simulation-based evaluation of the marginal effect. In particular, covariate effect estimation proceeds as a forecasting problem in which, given a draw ψ from the posterior, a value of $y_i = (y_{iLS}, y_{iPB})'$ is generated and converted to $y_i = (y_{iLS}, y_{iPB})'$ for both the high and low price categories. Performing this simulation multiple times and averaging the resulting differences between the high and low price simulated values of y_i gives an estimate of the average effect of the exogenous covariate price category and is a useful way to interpret the
magnitude of β_2. Using this simulation approach, we have been able to determine that y_{IS} decreases by approximately 0.35 when price category is changed from 0 (low price) to 1 (high price) suggesting that shoppers utilize more attribute-based search patterns. Because of the simultaneity in the model a change in this covariate also has an effect on y_{PB}, which decreases by approximately 0.09. Both of these effects are of economically significant magnitudes.

Hypothesis H1 postulated that shoppers who search in alternative-based patterns will be more likely to purchase a product than shoppers who search in more attribute-based patterns. This hypothesis is supported by the data as it was found to have a robust effect in the baseline model – the posterior mean of θ_2 is given by 0.28 with posterior standard deviation of 0.1. One should keep in mind, however, that because both y_{IS}^* and y_{PB}^* are endogenous and simultaneously determined, interpretation of the coefficients θ is not ceteris paribus.

A cursory look at Table 1 may lead one to question whether the complexity of the simultaneous equation model is fully warranted in this setting. The fact that both θ_1 and ω_2 are small relative to their posterior standard deviations calls for examination of simpler model specifications. Several simpler competing models are presented in Figure 5 and Table 2. In particular, model M_2 is a mediated model of consumer behavior in which search is endogenous, but there is no full simultaneity. In that specification θ_1 is restricted to zero, producing a system with recursive endogeneity, but no simultaneity, between the variables – the Tobit equation specifies a link between price category and information search pattern, and the probit equation, in turn, studies the impact of
information search pattern on consumers’ propensity to buy but rules out feedback in the reverse direction. Model \(M_3 \) offers another simplification: it does not allow for the possibility that the error terms in the two equations may be correlated as \(\Omega \) is diagonal. Model \(M_4 \) goes even further and treats propensity to buy and information search as completely independent of each other. Finally, model \(M_5 \) allows for correlation in the errors but restricts both \(\theta_1 \) and \(\theta_2 \) to zero, ruling out endogeneity or simultaneity and producing a system of seemingly unrelated Tobit and probit equations. By examining these simpler alternative models, we can gauge the empirical relevance of the benchmark model, \(M_1 \), and cast further light on the hypotheses that were discussed earlier.

The marginal likelihood results in Table 2 indicate that the simultaneous equations model \(M_1 \) is supported by the data as it has the highest marginal likelihood. One can see that removing the parameters \(\theta_1 \) and \(\omega_{12} \) either one at a time or jointly (as in models \(M_2 , M_3 , \) and \(M_4 \)) reduces overall fit relative to the benchmark model \(M_1 \). Removing both \(\theta_1 \) and \(\theta_2 \) from model \(M_1 \) while still allowing for correlation between the error terms in the two equations (as in model \(M_5 \)) reduces the fit, but by less than in the other simplifications. As further evidence that \(\theta_1 \) and \(\omega_{12} \) play an important role in the benchmark model, we present a bivariate contour plot of their joint posterior distribution in Figure 6. The figure indicates that the mass of this joint posterior distribution is centered away from zero, even though each of the univariate 95% posterior credibility bands include that value, and for this reason the presence of these parameters in the model is supported by the data. The figure is also instructive because it reveals that the modal values of \(\theta_1 \) and \(\omega_{12} \) are 0.327 and -0.747, respectively. This is suggestive,
although weak, evidence in support of H_2; however, more data and further study are needed in order to determine the validity of this hypothesis.

We take the results presented in this section as strong evidence that the two equations should be treated jointly and that correlation in the errors must be properly accommodated. Through formal model comparisons, we have found that data strongly support hypotheses H_1 and H_3 and that further study is warranted to determine the empirical relevance of hypothesis H_2.

SUMMARY, MANAGERIAL IMPLICATIONS, LIMITATIONS, AND FUTURE RESEARCH

While the information processing literature in marketing has provided several important contributions over the past four decades on why individuals use alternative-based vs. attribute-based strategies (e.g., Bettman 1979; Luce, Payne, and Bettman 1999) in experimental settings, less attention has been paid to the relationship between such information processing or search strategies and product choices in shopping settings. To the best of our knowledge, this is the first work to explore this relationship in a field setting. This work is now possible because digital information is often presented in ways that facilitate such processing patterns and/or because search patterns can be observed or inferred by tracking devices. As a result, there is now a potential to connect all the experimental work over the past four decades on individual differences (e.g., novices vs. experts), properties of the task (e.g., complexity of information or amount of information and dissimilarity of options), and type of choice situation (e.g., whether it involves emotion, time pressure, or a certain type of information display) to product choices in shopping settings.
Measurement of information search strategies in the above mentioned literature is censored (in the range -1 to +1), purchase is binary (yes or no), and prior theory suggested a possibility of a relationship between purchase and information search (e.g., Dhar and Nowlis 2004) in addition to the general proposition of a relationship between information search and propensity to purchase. Models with such endogeneity and simultaneity have been difficult to estimate when the dependent variables of interest (purchase and information search) are not continuous, because standard two-stage estimators are inapplicable in such a context. We develop a Bayesian simulation-based estimation methodology that overcomes the analytical intractability of the likelihood function in this class of models.

Our main result is that the type of information processing or search pattern does impact a shopper’s propensity to buy. Specifically, shoppers whose search is more alternative-based are found to have a higher propensity to purchase than shoppers whose search is more attribute-based. The main rationale is that shoppers using alternative-based search are evaluating products one-at-a-time and are better able to judge whether the product meets their purchasing criteria or is suitable for them with lesser distraction from other products. Whether these shoppers are displaying a no trade-off approach such as a preconceived preference validation or satisficing strategy or a different search strategy in which they assess some or all of the available products to then select which product was the most suitable, the alternative-based approach is found to more likely result in a purchase decision. We have found that many “brick and click” retailers of durable produce categories (flat panel televisions, computers, etc.) do not present information on many shopper relevant features on the shelf talker. Our main result
suggests that shopper relevant features should be provided and if sales force resources are limited, they need to be allocated to shoppers whose queries focus on one of two products (alternative-based) in contrast to shoppers whose queries are more general (attribute-based) so that the queries cover several products.

Commercial websites usually provide more product selection than brick and mortar stores. Managers of commercial websites, in particular, need to ensure that visitors can easily identify products they are or would be interested in and determine whether these products meet their purchasing requirements (alternative-based processing). This can be accomplished through marketing research and segmentation, in order to identify the major usage or benefit segments so that recommendations of one or a couple products can be made to shoppers who would identify themselves with a particular usage or benefit segment. Alternatively, the shopper could be asked a few questions on whether they are interested in certain products or a few questions about their proposed usage or benefits desired so that recommendations can be made for further alternative-based processing. In addition, if the shopping cart was abandoned, manufacturers and retailers could prioritize alternative-based shoppers over attribute-based shoppers for follow-up or short-term promotional efforts.

Our second finding is that shoppers in low price categories are more likely to employ alternative-based search than shoppers in higher price categories. The main rationale is that shoppers in low price categories will be interested in the lowest price product(s) and will engage in an alternative-based search to ensure that the product does not have any negative features that deter purchase. In contrast, shoppers in higher price categories will be more interested in getting the best value and will conduct an attribute-
search to understand and make trade-offs required to attain best value (e.g., Tellis and Gaeth 1990). While segmentation of shoppers based on the type of search (alternative-vs. attribute-based) requires some tracking and computation, the price category a shopper shops in is easily observable. Many retailers in the brick and click spaces do not organize their presentations based on price. Such an organization could facilitate purchases among low and higher price category shoppers. Low price category shoppers would find it easier to identify the least expensive product. And higher price category shoppers would find it easier to identify alternatives to conduct an attribute-based search in order to understand and make trade-offs required to attain best value. In addition, such an organization would simplify the choice task since shoppers in a certain category consider fewer options. A more complex choice environment with a larger set of unorganized products would require attribute-based evaluations to identify a couple products before subsequent alternative-based evaluations can be performed.

This investigation was conducted in one durable product category offered by a popular retailer. It would be useful to understand whether the relationship between search and choice varies across durable product categories, retailers, and consumers. For example in lower (or higher) price product categories such as small household appliances (luxury watches) which are less subject to technological change, shoppers may search differently and the relationship between search and choice might be different. It would also be useful to understand whether the relationship between search and choice varies across retailers. For example, it is possible that consumers shopping for durables at certain retailers that have developed strong reputations for everyday low prices (e.g., Wal-Mart), product value (e.g., Costco), or luxury (e.g., Louis Vuitton) might modify
their search behavior because of trust in the retailer and the relationship between search and purchase may be different from that when shopping at less differentiated stores. While these directions refer to studies conducted in retailer settings, it would also be useful to conduct studies in a consumer setting, which allow us to follow the digital search conducted by the consumer from the moment they begin thinking about a durable purchase in a certain product category to the moment they make a purchase. Such a study could provide a portrait about how search evolves towards purchase and the differences across product categories and retailers. We hope our efforts will motivate such future research.
APPENDIX

Algorithm 1: MCMC Estimation of the Latent Data Simultaneous Equations Model

1. Sample \([\beta | y^*, \theta, \Omega] \sim N(\bar{\beta}, \bar{B})\), where

\[
\bar{B} = \left(B_0 + \sum_i X_i' \Omega^{-1} X_i \right)^{-1} \quad \text{and} \quad \bar{\beta} = \bar{B}(B_0^{-1} \beta_0 + \sum_i X_i' \Omega^{-1} A_i^*)
\]

2. Sample \([\theta | y^*, \beta, \Omega] \) by drawing a proposal draw \(\theta' \sim T_v(\theta, \Theta) \) where \(T_v(\cdot) \) is a multivariate t distribution with \(v \) degrees of freedom, mean \(\bar{\theta} \) taken to be the maximum, and \(\Theta \) is the inverse of the negative Hessian, of the complete data log-likelihood function \(L(\theta; y^*) \), i.e. given the latent data \(\{y_i^*\} \) (keep in mind the Jacobian term due to A). Given the proposed draw \(\theta' \) and the current draw \(\theta \) in the Markov chain, accept \(\theta' \) with probability

\[
\alpha(\theta, \theta') = \min\left\{ 1, \frac{L(\theta'; y^*) \pi(\theta') f_{T_v}(\theta | \bar{\theta}, \bar{\Theta})}{L(\theta; y^*) \pi(\theta) f_{T_v}(\theta' | \bar{\theta}, \bar{\Theta})} \right\},
\]

otherwise return \(\theta \).

3. Sample \([\Omega | y^*, \theta, \beta] \) by drawing \(\omega_{1:2} = \omega_{1:2} - \omega_{1:2} \omega_{2:2}^{-1} \omega_{2:1} \) from

\[
\omega_{1:2} \sim IW(r_0 + n, Q_{1:1}), \quad \text{where} \quad Q = R_0^{-1} + \sum_i \left(y_i^* - X_i \beta \right) \left(y_i^* - X_i \beta \right)',
\]

followed by drawing \(\omega_{1:2} \sim N(Q_{2:2}^{-1} Q_{2:1}, \omega_{1:2} Q_{2:2}^{-1}) \), from which \(\Omega \) can be recovered directly.

4. For \(i = 1, \ldots, n \), sample \([y_{iUS}^*, y_{iIPB}^*, \beta, \theta, \Omega] \sim TN_{S_i} (\mu_{i:2}, V_{i:2}) \) from a truncated normal distribution, where \(S_i \) is the region consistent with the censoring of \(y_{iUS} \) and \(\mu_{k:2} \) and \(V_{k:2} \) are the usual conditional mean and variance for a normal random variable; at each step also sample \([y_{iIPB}^*, y_{iUS}^*, \beta, \theta, \Omega] \sim TN_{S_i} (\mu_{k:2}, V_{k:2}) \), where \(S_i \) is the region \((0, \infty)\) if \(y_{IPB} \) is 1, or it is the region \((-, 0)\) otherwise.

The first step in Algorithm 1 follows the form used in the sampling of seemingly unrelated regression models (see Chib and Greenberg 1995), the second step relies on the Metropolis-Hastings algorithm to sample \(\theta \) (resulting in acceptance rates of around 88-
90% in our application), the third follows from the properties of the inverse Wishart
distribution (see Dreze and Richard 1983, and Chib, Greenberg, and Jeliazkov 2009), and
the final step exploits the data augmentation techniques proposed in Chib (1992) and
Albert and Chib (1993). The marginal likelihoods of models fit by Algorithm 1 are
evaluated following the approach of Chib (1995) and Chib and Jeliazkov (2001).
REFERENCES

Figure 1. Presentation which offers Alternative-based Qualitative Information
Technical Specifications

Size and weight
- **Height:** 4.1 inches (103.5 mm)
- **Width:** 2.4 inches (61.8 mm)
- **Depth:** 0.41 inch (10.5 mm)
- **Weight:** 4.5 ounces (140 grams)

Display
- 2.5-inch diagonal color LCD with LED backlight
- 320-by-240-pixel resolution at 163 pixels per inch

Audio
- Frequency response: 100Hz to 20,000Hz
- Audio formats supported: AAC (16 to 320 Kbps), Protected AAC (from iTunes Store), M4A (up to 320 Kbps), MP3 (up to 320 Kbps), Audible (formats 2, 3, and 4), Apple Lossless, AIFF, and WAV

Capacity
- 80GB hard drive
- Holds up to 5,000 songs and 2,000 hours of video

In the box
- iPod classic
- Earphones
- USB 2.0 cable
- Dock adapter
- Quick Start guide

Environmental Status Report

- iPod classic embodies Apple’s continuing environmental progress.
- It is designed with the following features to reduce environmental impact:
 - Arsenic-free glass
 - Brominated flame retardant-free
 - Mercury-free
 - PVC-free
 - Highly recyclable aluminum and stainless steel enclosure
 - Recycled and bio-based packaging materials

Languages
- Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Simplified Chinese, Spanish, Swedish, Traditional Chinese, and Turkish
- Additional language support for display of song, album, and artist information.

Mac system requirements
- Mac computer with USB 2.0 port
- Mac OS X v10.4.11 or later
- iTunes 8 or later

Windows system requirements
- PC with USB 2.0 port
- Windows Vista or Windows XP Home or Professional with Service Pack 3 or later
- iTunes 8 or later

Environmental requirements
- Operating temperature: 32° to 95°F (0° to 35°C)
- Nonoperating temperature: -4° to 115°F (-20° to 45°C)
- Relative humidity: 5% to 95% noncondensing
- Maximum operating altitude: 10,000 feet (3000 m)
Comparison Chart

<table>
<thead>
<tr>
<th></th>
<th>iPod Shuffle</th>
<th>iPod nano</th>
<th>iPod classic</th>
<th>iPod touch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>1GB</td>
<td>2GB</td>
<td>8GB</td>
<td>16GB</td>
</tr>
<tr>
<td>Songs</td>
<td>240</td>
<td>500</td>
<td>2,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Price</td>
<td>$49</td>
<td>$69</td>
<td>$119</td>
<td>$199</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery life</td>
<td>Up to 12 hours of music playback</td>
<td>Up to 24 hours of music playback, up to 4 hours of video playback</td>
<td>Up to 36 hours of music playback, up to 6 hours of video playback</td>
<td>Up to 35 hours of music playback, up to 6 hours of video playback</td>
</tr>
<tr>
<td>Display</td>
<td>2-inch (diagonal) color LCD with LED backlight</td>
<td>2.5-inch (diagonal) color LCD with LED backlight</td>
<td>2.5-inch (diagonal) widescreen Multi-Touch display</td>
<td>3.5-inch diagonal widescreen Multi-Touch display</td>
</tr>
<tr>
<td>Ports</td>
<td>3.5mm stereo minijack</td>
<td>Dock connector, stereo minijack</td>
<td>Dock connector, stereo minijack</td>
<td>Dock connector, stereo minijack</td>
</tr>
<tr>
<td>Connectivity</td>
<td>USB through included dock</td>
<td>USB through dock connector, component and composite video through dock connector (with AV cables, sold separately); audio through headphone jack</td>
<td>USB through dock connector, component and composite video through dock connector (with AV cables, sold separately); audio through headphone jack</td>
<td>USB through dock connector, component and composite video through dock connector (with AV cables, sold separately); audio through headphone jack</td>
</tr>
<tr>
<td>Wireless data</td>
<td>Wi-Fi (IEEE 802.11 b/g)</td>
<td>Wi-Fi (IEEE 802.11 b/g)</td>
<td>Wi-Fi (IEEE 802.11 b/g)</td>
<td>Wi-Fi (IEEE 802.11 b/g)</td>
</tr>
<tr>
<td>Charge time</td>
<td>About 4 hours (2-hour fast charge to 80% capacity)</td>
<td>About 5 hours (2-hour fast charge to 80% capacity)</td>
<td>About 4 hours (2-hour fast charge to 80% capacity)</td>
<td>About 4 hours (2-hour fast charge to 80% capacity)</td>
</tr>
<tr>
<td>Audio support</td>
<td>AAC (16 to 320 Kbps), Protected AAC (from iTunes Store); M4P (8 to 320 Kbps), M4B, M3U8, Audible (formats 2.3, and 4), and WMA</td>
<td>AAC (16 to 320 Kbps), Protected AAC (from iTunes Store); M4P (8 to 320 Kbps), M4B, M3U8, Audible (formats 2.3, and 4), and WMA</td>
<td>AAC (16 to 320 Kbps), Protected AAC (from iTunes Store); M4P (8 to 320 Kbps), M4B, M3U8, Audible (formats 2.3, and 4), and WMA</td>
<td>AAC (16 to 320 Kbps), Protected AAC (from iTunes Store); M4P (8 to 320 Kbps), M4B, M3U8, Audible (formats 2.3, and 4), and WMA</td>
</tr>
<tr>
<td>Photo support</td>
<td>Syncs iPod-rollable photos in JPEG, GIF, TIFF, PSD (Mac only), and PNG formats</td>
<td>Syncs iPod-rollable photos in JPEG, GIF, TIFF, PSD (Mac only), and PNG formats</td>
<td>Syncs iPod-rollable photos in JPEG, GIF, TIFF, PSD (Mac only), and PNG formats</td>
<td>Syncs iPod-rollable photos in JPEG, GIF, TIFF, PSD (Mac only), and PNG formats</td>
</tr>
<tr>
<td>Video support</td>
<td>H.264 video, up to 1.7 Mbps, 640 by 480 pixels, 30 frames per second, Low-Complexity version of the H.264 Baseline Profile with AAC-LC audio up to 192 Kbps, stereo, stereo audio in, stereo, mp4, and move file formats; H.264 video, up to 2.5 Mbps, 640 by 480 pixels, 30 frames per second, Baseline Profile up to Level 3.0 with AAC-LC audio up to 160 Kbps, 48kHz, stereo audio in, stereo, mp4, and move file formats</td>
<td>H.264 video, up to 1.7 Mbps, 640 by 480 pixels, 30 frames per second, Low-Complexity version of the H.264 Baseline Profile with AAC-LC audio up to 192 Kbps, 48kHz, stereo audio in, stereo, mp4, and move file formats; H.264 video, up to 2.5 Mbps, 640 by 480 pixels, 30 frames per second, Baseline Profile up to Level 3.0 with AAC-LC audio up to 160 Kbps, 48kHz, stereo audio in, stereo, mp4, and move file formats</td>
<td>H.264 video, up to 1.7 Mbps, 640 by 480 pixels, 30 frames per second, Low-Complexity version of the H.264 Baseline Profile with AAC-LC audio up to 192 Kbps, 48kHz, stereo audio in, stereo, mp4, and move file formats; H.264 video, up to 2.5 Mbps, 640 by 480 pixels, 30 frames per second, Baseline Profile up to Level 3.0 with AAC-LC audio up to 160 Kbps, 48kHz, stereo audio in, stereo, mp4, and move file formats</td>
<td>H.264 video, up to 1.7 Mbps, 640 by 480 pixels, 30 frames per second, Low-Complexity version of the H.264 Baseline Profile with AAC-LC audio up to 192 Kbps, 48kHz, stereo audio in, stereo, mp4, and move file formats; H.264 video, up to 2.5 Mbps, 640 by 480 pixels, 30 frames per second, Baseline Profile up to Level 3.0 with AAC-LC audio up to 160 Kbps, 48kHz, stereo audio in, stereo, mp4, and move file formats</td>
</tr>
<tr>
<td>Size</td>
<td>1.07 x 0.82 x 0.55 inches (27.3 x 21.2 x 13.5 mm)</td>
<td>0.8 x 0.61 x 0.28 inches (60.7 x 38.7 x 6.2 mm)</td>
<td>0.61 x 0.2 x 0.61 inches (153.3 x 61.8 x 15.1 mm)</td>
<td>0.49 x 0.24 x 0.68 inches (110 x 61.8 x 17.3 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 ounces (14.8 grams)</td>
<td>1.6 ounces (46.8 grams)</td>
<td>1.8 ounces (51.0 grams)</td>
<td>2.4 ounces (68 grams)</td>
</tr>
<tr>
<td>Included accessories</td>
<td>Earphones, USB dock</td>
<td>Earphones, USB cable, dock adapter</td>
<td>Earphones, USB cable, dock adapter, polishing cloth</td>
<td>Earphones, USB cable, dock adapter, polishing cloth</td>
</tr>
</tbody>
</table>
Figure 4. Conceptual Framework

- Price Category
- Information Search Pattern
- Propensity to Buy
Figure 5. Overview of Models

M_1: Simultaneous Equations Model

M_2: Recursive Endogeneity or Mediated Model

M_3: Recursive Model with Independent Errors

M_4: Independent Equations Model

M_5: Seemingly Unrelated Regression Model for Discrete Data
Table 1: Parameter Estimates for Model M_1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Covariate</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% posterior interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>eq. 1: intercept</td>
<td>0.93</td>
<td>0.08</td>
<td>0.93</td>
<td>(0.78, 1.09)</td>
</tr>
<tr>
<td></td>
<td>price category</td>
<td>-0.76</td>
<td>0.17</td>
<td>-0.74</td>
<td>(-1.12, -0.47)</td>
</tr>
<tr>
<td></td>
<td>eq. 2: intercept</td>
<td>-0.25</td>
<td>0.08</td>
<td>-0.25</td>
<td>(-0.39, -0.09)</td>
</tr>
<tr>
<td>θ</td>
<td>y^*_{iPB}</td>
<td>-0.04</td>
<td>0.60</td>
<td>0.02</td>
<td>(-1.29, 0.98)</td>
</tr>
<tr>
<td></td>
<td>y^*_{iIS}</td>
<td>0.28</td>
<td>0.10</td>
<td>0.28</td>
<td>(0.08, 0.46)</td>
</tr>
<tr>
<td>ω_{11}</td>
<td></td>
<td>2.74</td>
<td>0.67</td>
<td>2.55</td>
<td>(2.07, 4.55)</td>
</tr>
<tr>
<td>ω_{12}</td>
<td></td>
<td>-0.41</td>
<td>0.54</td>
<td>-0.49</td>
<td>(-1.26, 0.82)</td>
</tr>
</tbody>
</table>
Table 2: Model Comparisons.

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>Ω</th>
<th>ln(marginal likelihood)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simultaneous equations model</td>
<td>$\begin{pmatrix} 1 & -\theta_1 \ -\theta_2 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} \alpha_{11} & \alpha_{12} \ \alpha_{21} & 1 \end{pmatrix}$</td>
<td>-1284.59 (0.02)</td>
</tr>
<tr>
<td>Recursive endogeneity or mediated model</td>
<td>$\begin{pmatrix} 1 & 0 \ -\theta_2 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} \alpha_{11} & \alpha_{12} \ \alpha_{21} & 1 \end{pmatrix}$</td>
<td>-1288.64 (0.01)</td>
</tr>
<tr>
<td>Recursive endogeneity or mediated model with independent errors</td>
<td>$\begin{pmatrix} 1 & 0 \ -\theta_2 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} \sigma^2 & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>-1292.36 (0.01)</td>
</tr>
<tr>
<td>Independent equations model</td>
<td>$\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} \sigma^2 & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>-1297.93 (0.01)</td>
</tr>
<tr>
<td>Seemingly unrelated regression model for discrete data</td>
<td>$\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} \alpha_{11} & \alpha_{12} \ \alpha_{21} & 1 \end{pmatrix}$</td>
<td>-1285.87 (0.01)</td>
</tr>
</tbody>
</table>
Figure 6: Bivariate contour plot of the joint distribution of θ_1 and ω_{12} in model M_1.