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Evolutionary Selection of Individual Expectations and 
Aggregate Outcomes in Asset Pricing Experiments†

By Mikhail Anufriev and Cars Hommes*

In recent “learning to forecast” experiments (Hommes et al. 2005), 
three different patterns in aggregate price behavior have been 
observed: slow monotonic convergence, permanent oscillations, and 
dampened fluctuations. We show that a simple model of individual 
learning can explain these different aggregate outcomes within the 
same experimental setting. The key idea is evolutionary selection 
among heterogeneous expectation rules, driven by their relative 
performance. The out-of-sample predictive power of our switching 
model is higher compared to the rational or other homogeneous 
expectations benchmarks. Our results show that heterogeneity in 
expectations is crucial to describe individual forecasting and aggre-
gate price behavior. (JEL C53, C91, D83, D84, G12)

In the economy, today’s individual decisions crucially depend upon expectations 
or beliefs about future developments. For example, in speculative asset markets 

such as the stock market, an investor buys (sells) stocks today when she expects stock 
prices to rise (fall) in the future. Expectations affect individual trading decisions and 
the realized market outcome (e.g., prices and traded quantities) is an aggregation of 
individual behavior. A market is therefore an expectations feedback system: market 
history shapes individual expectations which, in turn, determine current aggregate 
market behavior and so on. How exactly do individuals form market expectations, 
and what is the aggregate outcome of the interaction of individual market forecasts? 
To answer these questions in this paper we reinvestigate individual learning behav-
ior observed in the laboratory experiments of Hommes et al. (2005) and Hommes 
et al. (2008) (HSTV05 and HSTV08, henceforth), specifically designed to study 
expectations feedback. On the basis of the experimental evidence we propose a 
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behavioral model of heterogeneous expectations, which fits individual forecasting 
behavior as well as aggregate market outcomes in the experiments quite well.

After the seminal work by Muth (1961) and Lucas (1972), it has become com-
mon practice in economic theory to assume that all individuals have rational expec-
tations. In a rational world individual expectations coincide, on average, with market 
realizations, and markets are efficient with prices fully reflecting economic funda-
mentals (Samuelson 1965; Fama 1970). In the traditional view, there is no room for 
market psychology and “irrational” herding behavior. An important underpinning 
of the rational expectations approach comes from an early evolutionary argument 
made by Friedman (1953), that “irrational” traders will not survive competition and 
will be driven out of the market by rational traders, who will trade against them and 
earn higher profits.

Following Simon (1957), many economists have argued that rationality imposes 
unrealistically strong informational and computational requirements upon indi-
vidual behavior and that it is more reasonable to model individuals as boundedly 
rational, using simple rules of thumb in decision making. Laboratory experiments 
indeed have shown that individual decisions under uncertainty are at odds with 
perfectly rational behavior, and can be much better described by simple heuris-
tics, which sometimes may lead to persistent biases (Tversky and Kahneman 1974; 
Kahneman 2003; Camerer and Fehr 2006). Models of bounded rationality have also 
been applied to forecasting behavior, and several adaptive learning algorithms have 
been proposed to describe market expectations. For example, Sargent (1993) and 
Evans and Honkapohja (2001) advocate the use of adaptive learning in modeling 
expectations, where agents learn unknown parameters of the model using econo-
metric techniques on past observations. In some models (Bray and Savin 1986) 
adaptive learning enforces convergence to rational expectations, while in others 
(Bullard 1994) learning may not converge at all but instead lead to excess volatility 
and persistent deviations from rational expectations equilibrium similar to field set-
tings (Shiller 1981; DeBondt and Thaler 1989). While most of the initial adaptive 
learning models have been used in the macroeconomics literature, several of them 
recently have been applied to explain various phenomena of financial markets. The 
results are mixed. Adam, Marcet, and Nicolini (2011) show that when agents predict 
price returns with least-squares learning, the moments of time series of returns and 
price-dividend ratios are significantly closer to the actual values than under rational 
expectations. On the other hand, Carceles-Poveda and Giannitsarou (2008) study 
similar least-squares learning in a general equilibrium framework and find that it is 
not sufficient to bring moments toward plausible values. Branch and Evans (2011) 
show that a model with least-squares learning of returns and the conditional vari-
ance of returns generates repeated bubbles and crashes.

Recently, models with heterogeneous expectations and evolutionary selection 
among forecasting rules have been proposed, in Brock and Hommes (1997) and 
Branch and Evans (2006), see Hommes (2006) for an extensive overview. By tak-
ing a larger deviation from the rational expectation framework, these models were 
able to match moments of different financial variables and generate several “stylized 
facts” of financial markets, such as excess volatility, volatility clustering, and fat 
tails of the return distribution. See Gaunersdorfer, Hommes, and Wagener (2008); 
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Anufriev and Panchenko (2009); Franke and Westerhoff (2011), among others. At 
the same time Boswijk, Hommes and Manzan (2007) and de Jong, Verschoor, and 
Zwinkels (2009) estimated heterogeneous expectation models on financial market 
data and found evidence of heterogeneity. Fitting such models to “clean” experi-
mental data, as we do in this paper, provides an important additional test for het-
erogeneous expectations models. Moreover, we will use the experimental data to 
provide an empirical microfoundation for the model, since the forecasting rules 
which we will employ were among the individual rules estimated in the laboratory.

Laboratory experiments with human subjects are well suited to study individual 
expectations and how their interaction shapes aggregate market behavior (Marimon, 
Spear, and Sunder 1993; Peterson 1993). But the results from laboratory experiments 
are mixed. Early experiments by Smith (1962) show convergence to equilibrium, 
while more recent asset pricing experiments exhibit deviations from equilibrium 
with persistent bubbles and crashes, see, e.g., Smith, Suchanek, and Williams (1988) 
and Lei, Noussair, and Plott (2001). It is important to recognize that in many ear-
lier experiments expectations only play a secondary role, being intertwined with 
other aspects, such as market architecture and trading behavior of participants. In 
order to provide clean data on expectations and control all other underlying model 
assumptions, HSTV05 designed a so-called “learning to forecast” experiment.1 In 
a typical session six human subjects had to predict the price of an asset for 50 peri-
ods, having knowledge of the fundamental parameters (mean dividend and inter-
est rate) and previous price realizations. Trading is computerized, using an optimal 
demand schedule derived from maximization of myopic constant absolute risk aver-
sion (CARA) mean-variance utility, given the subject’s individual forecast. Hence, 
subject’s only task in every period is to give a two period ahead point prediction for 
the price of the risky asset, and their earnings are inversely related to their prediction 
errors. Learning to forecast experimental data can be used as a test bed for various 
expectations hypotheses, such as rational expectations or adaptive learning models, 
in any benchmark dynamic economic model with all other assumptions controlled 
by the experimenter; see Duffy (2008).

HSTV05 ran 14 sessions of the learning to forecast experiment in three dif-
ferent treatments. In seven sessions of one of the treatments, the outcomes were 
quite different, despite identical settings. While in some sessions price convergence 
did occur, in other sessions prices persistently fluctuated and temporary bubbles 
emerged (see Figure 2, panel C and the right panels of Figure 3). HSTV08 ran six 
sessions in another treatment and show that the typical outcome of the experiment 
is the emergence of long-lasting bubbles followed by crashes (see Figure 2, panel 
B). Another striking and robust finding of the learning to forecast experiments is 
that in all sessions individuals were able to coordinate on a common prediction rule, 

1 See Hommes (2011) for an overview of learning to forecast experiments, where also earlier experiments on 
expectation formation are discussed, e.g., Williams (1987) and Hey (1994) among others. The experiments in 
HSTV05 and HSTV08, which we discuss in this paper, study expectations in financial markets. Experiments in 
Heemeijer et al. (2009); and Bao et al. (forthcoming) consider markets of agricultural goods in a cobweb frame-
work, while Adam (2007); Assenza et al. (2011); and Pfajfar and Zakelj (2010) ran experiments in a macroeco-
nomic environment. Anufriev, Hommes, and Philipse (forthcoming) fit a version of the heuristic switching model 
to the Heemeijer et al. (2009) experiment.
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without any knowledge about the forecasts of others (see Figure 3, in the Predictions 
portion of the panels).

Anufriev and Hommes (2012) showed by three 50-periods-ahead simulations 
that a simple learning model of heterogeneous expectations can generate dynam-
ics qualitatively similar to the three outcomes observed in some of the HSTV05 
experiments. In this paper we fit the model to all 20 different market sessions in the 
HSTV05 and HSTV08 experiments and perform one period ahead and out-of-sam-
ple forecasting. Our model is an extension of the evolutionary selection mechanism 
introduced in Brock and Hommes (1997), applied to simple prediction rules which 
individuals often used in the experiment. From the point of view of the partici-
pants several plausible behavioral rules can be used for price prediction at each time 
step. Participants can choose any of these rules, but at the aggregate level the rules 
which generated relatively good predictions in the recent past will be chosen more 
often. Participants also exhibit some inertia in their decisions, by temporarily stick-
ing to their rule. Combining these ideas we arrive at a behavioral model of learning 
with only three free parameters. We show that this model fits the experimental data 
surprisingly well for a large range of parameters. The model outperforms several 
models with homogeneous expectations and a simple non-structural AR (2) model 
both in and out of sample. Our model of individual learning can explain different 
observed aggregate patterns within the same experimental environment (Figure 6) 
and is robust with respect to changes in the experimental environments (Figure 8).

The fact that the model with heterogeneous expectations can explain different 
aggregate outcomes observed within the same environment has a clear intuitive 
explanation. The key feature driving the result is the path-dependent property of 
the nonlinear switching model. If participants start to coordinate on an adaptive 
rule, the resulting (stable) price dynamics is such that the adaptive rule performs 
better than other rules, reinforcing the coordination and explaining convergence and 
stable price behavior. If, on the other hand, a majority of participants coordinates 
on a trend-following rule, price oscillations and temporary bubbles arise. In that 
case trend-following rules predict better than the adaptive rule, thus reinforcing and 
amplifying price trends and temporary bubbles.

The paper is organized as follows. In Section I, we review the findings of the 
laboratory experiments of HSTV05 and HSTV08. Section II discusses individual 
behavior of participants in the experiments, and studies the price dynamics under 
homogeneous forecasting rules. A learning model based on evolutionary selection 
between simple forecasting heuristics is presented in Section III. In Section IV we 
discuss how our model fits the experimental data. Finally, Section V concludes.

I. Learning-to-Forecast Experiments

A number of computerized learning-to-forecast experiments (LtFEs) have been 
performed in the CREED laboratory at the University of Amsterdam, see Hommes 
(2011) for an overview. This paper proposes a theoretical explanation of the results 
obtained in 20 different sessions of the LtFEs based on the asset pricing model, see 
HSTV05 and HSTV08. In each session of the experiment, 6 participants were advis-
ers to large pension funds and had to submit point forecasts for the price of a risky 
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asset for 50 consecutive  periods. There were two assets in the market, a risk-free 
asset paying a fixed interest rate r every period, and a risky asset paying stochastic 
IID dividends with mean  

_
 y  . Subjects knew that the price of the risky asset is deter-

mined every period by market clearing, as an aggregation of individual forecasts of 
all participants. They were also informed that the higher the forecasts are, the larger 
the demand for the risky asset is. Stated differently, they knew that there was posi-
tive feedback from individual price forecasts to the realized market price. Trading 
had been computerized with the price  p t  determined in accordance with a standard 
mean-variance asset pricing model with heterogeneous beliefs (Campbell, Lo, and 
MacKinlay 1997; Brock and Hommes 1998):

(1)  p t  =   1 _ 
1 + r   (   _ p    t+1  e

   +  _ y   +  ε t ),  t = 0, … , 50,

where   
_
 p    t+1  e
   =   1 _ 

6
    ∑ i=1  

6
    p  i, t+1  e

    is the average of 6 individual forecasts, and a small 
stochastic term  ε t  represents demand/supply shocks. The same realizations of the 
shocks, drawn independently from a normal distribution with mean 0 and standard 
deviation 0.5, has been used in all sessions of HSTV05. An individual forecast,  
p  i, t+1  e

  , could be any number (with two decimals) in the range [0, 100] to be submit-
ted at the beginning of period t, when the last observed price is from period t − 1. 
Subjects, therefore, had to make two-periods-ahead forecasts. After all forecasts 
were submitted, every participant was informed about the realized price  p t . The 
earnings per period were determined by a quadratic scoring rule

(2)  e i, t  = { 

 

1 −  (   p t  −  p  i, t  e
  
 _ 7  ) 2 
   

0
 

 

    

 

if  |  p t  −  p  i, t  e
   | < 7,

   
otherwise ,

 

 

 

so that forecasting errors exceeding 7 would result in no reward at a given period. 
At the end of the session, the accumulated earnings of every participant were con-
verted to euros (1 point computed as in (2) corresponded to 50 cents). Subjects of 
the experiments neither knew the exact functional form of the market equilibrium 
equation (1) nor the number and identity of other participants. They were informed 
about the scoring rule (2) and the values of the fundamental parameters, r and  

_
 y  , at 

the beginning of the experiment. Participants could, therefore, compute the rational 
fundamental price of the risky asset, given by the discounted sum of expected divi-
dends, which reduces to  p  f  =  _ y  /r. See, for example, Campbell, Lo, and MacKinlay 
(1997, 256) and Brock and Hommes (1998, 1239). The information set of partici-
pant i at period t consisted of past prices up to  p t−1 , past own predictions up to  p  i, t  e

  , 
the fundamental parameters r and  

_
 y  , and past own earnings.

On the basis of variations in the implementation of the experiment, four different 
experimental settings (treatments) can be identified. The setup described above has 
been used in sessions 11 − 14 of HSTV05, with  

_
 y   = 3 and r = 0.05, resulting in a 

fundamental price  p  f  = 60. For reasons which will become clear below, we use the 
acronym NoRo (no robots) for these four sessions. Figure 1 shows the simulation of 
prices and prediction errors, which would occur when all individuals use the funda-
mental forecasting rule,  p  i, t+1  e

   = 60, for all i and t. Under rational expectations, the 
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realized price  p t  = 60 +  ε t /(1 + r) randomly fluctuates around the fundamental 
level with small amplitude. In the experiment, one cannot expect rational outcome at 
the outset, but aggregate prices might converge to their fundamental value through 
individual learning. The actual price dynamics in the four sessions of the experiment 
are shown in Figure 2, panel A. Interestingly, only in one session the price converges 
to the fundamental value, while in three other sessions constant or dampened price 
oscillations with high amplitude are observed.

HSTV08 ran six sessions of a different treatment of the LtFE, where the price 
is determined according to (1) without shocks  ε t , and where participants could 
submit their predictions in a much larger range [0, 1000]. The experimental results 
in all six sessions are shown in Figure 2, panel B under the acronym LFR (large 
forecasting range). An increase of the allowable prediction range results in long-
lasting bubbles.

In order to make long-lasting bubbles less likely, HSTV05 used a slightly differ-
ent pricing rule:

(3)  p t  =   1 _ 
1 + r   ((1 −  n t )   

_
 p    t+1  e
   +  n t   p  f  +  _ y   +  ε t ) ,

where  n t  represents the weight of the robot trader, whose forecast is always  p  f   ; the 
average forecast of the six participants has weight 1 −  n t   . In field settings, robot 
traders correspond to fundamentalists, who have a better understanding of the 
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market environment than other traders. The weight of the robot traders increases in 
response to the deviations of the asset price from its fundamental level:

(4)  n t  = 1 − exp (−   1 _ 
200

   |  p t−1  −  p  f  |) .

This mechanism reflects the feature that in financial markets there is more agree-
ment about over- or undervaluation of an asset when the price deviation from the 
fundamental level is large.2 Seven experimental sessions, 1–7, had the fundamental 
parameters r = 0.05 and  

_
 y   = 3 with fundamental price  p  f  =  _ y  /r = 60. For this 

specification, an acronym Ro-HF (robots, high fundamental) is used. As Figure 2, 
panel C shows, in the presence of a stabilizing robot traders the amplitude of the 
oscillations decreases. Finally, in the remaining sessions 8–10, the market had a 
smaller dividend  

_
 y   = 2, resulting in a smaller fundamental price  p  f  =  _ y  /r = 40, 

see Figure 2, panel D. The oscillations are quite large in this Ro-LF (robots and low 
fundamental) case.

A closer look at six different sessions of the LtFEs is given in Figure 3. The left 
panels show time series of prices (upper parts of panels), individual  predictions 

2 In the experiments, the fraction of robot trader never became larger than 0.25.
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(lower parts of panels) and forecasting errors (inner frames) for three out of seven 
sessions in the Ro-HF treatment. A striking feature of this experiment is that three 
different qualitative patterns for aggregate price behavior emerge within the same 
environment. The prices in session 5 (and 2; not shown) converge slowly and almost 
monotonically to the fundamental price level. In session 6 (and 1; not shown), 
persistent oscillations are observed during the entire experiment. In session 4 

Figure 3. Prices, Predictions, and Forecasting Errors in Six Sessions of the LtFEs

notes: The left panels illustrate three qualitatively different outcomes for the same Ro-HF treatment. The right pan-
els illustrate typical examples of the Ro-LF, NoRo, and LFR treatments. Every panel shows time series of price 
(upper part), six individual predictions (lower part), and six forecasting errors (inner frame).
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(and 7; not shown), prices are also fluctuating but their amplitude is decreasing. 
The right panels of Figure 3 show the price fluctuations in the typical sessions of 
the other LtFEs: session 8 of Ro-LF, session 12 of NoRo, and session 2 of LFR.3

Individual predictions in Figure 3 show another striking result of the LtFEs. In all 
experimental sessions, participants were able to coordinate their forecasting activity. 
The forecasts are dispersed in the first periods but then become very close to each 
other. The coordination of individual forecasts has been achieved in the absence of 
any communication between subjects and knowledge of past and present predictions 
of other participants.

LtFEs represent a tailored laboratory study to test different theories of expecta-
tion formation. A suitable model should be able to reproduce the following findings 
of the HSTV05 and HSTV08 learning-to-forecast experiments:

•   Participants have not learned the RE fundamental forecasting rule; only in some 
cases individual predictions slowly moved in the direction of the fundamental 
price toward the end of the experiment.

•   Three different price patterns were observed in the same Ro-HF experiment: 
(i) slow, (almost) monotonic convergence, (ii) persistent oscillations with 
almost constant amplitude, and (iii) large initial oscillations dampening toward 
the end of the experiment.

•   LtFEs  tend  to produce  long lasting bubbles followed by crashes  in  the LFR 
treatment.

The purpose of this paper is to explain these “stylized facts” simultaneously by a 
simple behavioral model of individual learning.

II. Individual Forecasting Behavior

In this section, we will look closer at the individual forecasting behavior in the 
LtFEs in order to develop some behavioral foundations of the heterogeneous expec-
tations model.

Which forecasting rules did individuals use in the learning to forecast experi-
ment? Comparison of the RE benchmark in Figure 1, with the lab experiments in 
Figures 2 and 3, suggests that rational expectations is not a good explanation of 
individual forecasting and aggregate behavior. The REs cannot be reconciled with 
the dynamics of the HSTV05 experiment, especially not in the oscillating sessions. 
Using individual experimental data HSTV05 estimated the forecasting rules for 
each subject based on the last 40 periods (to allow for some learning phase). Simple 
linear rules of the form

(5)  p  i, t+1  e
   =  α i  +  β i   p t−1  +  γ i  ( p t−1  −  p t−2 ) +   δ i   p  i, t  e

  

3 See online Appendix A for similar plots in all remaining sessions. Sessions 2, 1, and 7 of Ro-HF experiment 
have been analyzed in Anufriev and Hommes (2012). The dynamics in session 3 of Ro-HF were peculiar. Similar 
to session 6 it started with moderate oscillations, then stabilized at a level below the fundamental, suddenly falling 
significantly in period t = 40, probably due to a typing error of one of the participants.
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were estimated, where the index i stands for human subject. Notice that the informa-
tion on the right-hand side is consistent with the experimental timing: at the moment 
when the forecast for the price  p t+1  is submitted, the price  p t  is still unknown, but his 
own last forecast  p  i, t  e

   is known. Equation (5) is called first-order heuristics, because 
it only uses the last own forecast, the last observed price, and the last observed 
price change to predict the future price. Remarkably, individual forecasts are well 
explained by first-order heuristics: for 63 out of 14 × 6 = 84 participants (i.e., for 
75 percent) an estimated linear rule falls into this simple class with an  r 2  typically 
higher than 0.80.

The experimental evidence suggests strong coordination on a common prediction 
rule. One can therefore suspect that this common rule (which, for whatever reason, 
turned out to be different in different sessions) generates the resulting pattern. It is 
therefore useful to first investigate price dynamics under homogeneous expectations 
when all participants use the same forecasting rule. The model with homogeneous 
expectations is obtained when the average   

_
 p    t+1  e
   is generated by the rule of type 

(5) and then plugged into the corresponding pricing equation: equation (1) for the 
experiment without robots or equation (3) for the experiments with robots. Figure 4 
illustrates deterministic (setting the noise term  ε t  ≡ 0) as well as stochastic simula-
tions of the model with the same realization of the shocks as in the experiment.
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Adaptive Heuristic.—Participants from the converging sessions often used an 
adaptive expectations rule of the form

(6)  p  t+1  e
   = w  p t−1  + (1 − w)  p  t  e  =  p  t  e  + w ( p t−1  −  p  t  e ) ,

with weight 0 ≤ w ≤ 1. Notice that for w = 1, we obtain the special case of naive 
expectations.4

Assume that all participants use the same adaptive heuristic  p  t+1  e
   = w  p t−1  + 

(1 − w)  p  t  e  in their forecasting activity. It is easy to show (see online Appendix B) 
that in the absence of stochastic shock  ε t  the dynamics will monotonically converge 
to the fundamental price, independently of initial conditions. This is illustrated in 
Figure 4, panel A for two different values of the weight w assigned to the past price. 
Shocks slightly perturb the system, but the stochastic price series (shown by tri-
angles and squares) still exhibit almost monotonic convergence. Coordination on 
adaptive expectations thus seems a good explanation of the aggregate price pattern 
observed in the experimental sessions with convergence.

Trend-Following Heuristic.—Especially for the subjects in the permanent and the 
dampened oscillating sessions of HSTV05, estimation revealed a trend-following 
forecasting rule of the form

(7)  p  t+1  e
   =  p t−1  + γ ( p t−1  −  p t−2 ) ,

where γ > 0. This rule has a simple behavioral interpretation: the forecast uses 
the last price observation and adjusts in the direction of the last price change. The 
extrapolation coefficient γ measures the strength of the adjustment. The estimates of 
this coefficient ranged from relatively small extrapolation values, γ = 0.4, to quite 
strong extrapolation values, γ = 1.3.

The price in the homogeneous model may either converge or diverge under the 
trend-following rule (7), depending upon the parameter γ. In the former case the 
trend-following rule is called weak (see Figure 4, panel B), whereas in the latter 
case it is referred to as strong (see Figure 4, panel C). For weak trend extrapo-
lation, when the extrapolating coefficient is small (e.g., γ = 0.4), convergence is 
monotonic; for larger γ   -values (e.g., γ = 0.99) convergence becomes oscillatory. 
For strong trend extrapolation the price dynamics diverges from the fundamental 
steady state through oscillations of increasing amplitude. The speed of divergence 
and amplitude of the long run fluctuations increase with γ, as shown by comparison 
of the cases γ = 1.1 and γ = 1.3.

4 The adaptive rule (6) was estimated for 5 out of 12 participants in sessions 2 and 5 of the HSTV05 experiment. 
Three participants had w insignificantly different from 1. Four other participants used an AR(1) rule,  p  t+1  e

   = a + 
b p t−1 , conditioning only on the past price with a coefficient b < 1.
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Anchoring and Adjustment Heuristic.—A number of participants, especially in 
the permanently oscillating sessions,5 used slightly more sophisticated rules of the 
form

(8)  p  t+1  e
   = 0.5 (  p  f  +  p t−1 ) + (  p t−1  −  p t−2 ) .

This is an example of an anchoring and adjustment (AA) rule (Tversky and 
Kahneman 1974), since it extrapolates the last price change from the reference point 
or anchor (  p  f  +  p t−1 )/2 describing the “long-run” price level. One could argue that 
the anchor for this rule, defined as an equally weighted average between the last 
observed price and the fundamental price  p  f , was unknown in the experiment, since 
subjects were not provided explicitly with the fundamental price. Therefore, in our 
evolutionary selection model in Section III, one of the rules will be a modification 
of (8) with the fundamental price  p  f  replaced by a proxy given by the (observable) 
sample average of past prices  p  t−1  av

   = (1/t)  ∑ j=0  
t−1   p j    , to obtain

(9)  p  t+1  e
   = 0.5 (  p  t−1  av

   +  p t−1 ) + (  p t−1  −  p t−2 ) .

We will refer to this forecasting rule with an anchor learned through a sample aver-
age of past prices, as the learning anchoring and adjustment (LAA) heuristic.

Applying results from online Appendix B to the anchoring and adjustment rule (8) 
we conclude that the price dynamics of the homogeneous expectations model with AA 
heuristic converges to the fundamental steady-state, but the convergence is oscillatory 
and slow, see Figure 4, panel D. For the stochastic simulation the convergence is even 
slower and the amplitude of the price fluctuations remains more or less constant in 
the last 20 periods, with an amplitude ranging from 55 to 65 comparable to that of the 
permanently oscillatory session 6 in the HSTV05 experiments. The small shocks  ε t , 
added in the experimental design to mimic (small) shocks in a real market, thus seem 
to be important to keep the price oscillations alive. Figure 4, panel D also shows the 
price dynamics of the learning anchoring and adjustment (LAA) rule (9). Simulations 
under homogeneous expectations given by the LAA heuristic (9) converge to the same 
fundamental steady-state as with the AA heuristic (8), but much slower and with less 
pronounced oscillations. In the presence of noise, the price fluctuations under the 
LAA heuristic are qualitatively similar to the fluctuations in the permanently oscilla-
tory session 1 of the HSTV05 experiment (see, e.g., the lower left panel of Figure 5), 
with prices fluctuating below the fundamental most of the time.

A. Homogeneity versus Heterogeneity

Different homogeneous expectation models explain the three observed patterns 
in the HSTV05 experiments, monotonic convergence, constant oscillations, and 
dampened oscillations. However, a model with homogeneous expectations leaves 

5  For 4 out of 12 participants of sessions 1 and 6 of the HSTV05 the estimated rule was very close to (8).
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open the question why different patterns in aggregate behavior emerged in different 
experimental sessions.

The behavioral model proposed in this paper is based on the idea of heterogene-
ity, in the sense that several forecasting heuristics, those which we discussed above, 
could be used by the participants in every session. Participants learn which forecast-
ing rule to use by switching between different heuristics based upon relative past 
performance. Individual experimental forecasting data shows some evidence that 
this type of learning is what happened in the experiment. Figure 5 shows time series 
of (lagged) individual forecasts from the HSTV05 experiment together with the real-
ized price. The timing in the figure is important. For every time t on the horizontal 
axes, we show the price  p t  together with the individual two-periods-ahead forecast  
p  i, t+2  e

   of that price by some participant i. In this way, we can infer graphically how 
the two-periods-ahead forecast  p  i, t+2  e

   uses the last observed price  p t   . For example, if 
they coincide, i.e.,  p  i, t+2  e

   =  p t   , this implies naive expectations in period t.
In session 2, subject 5 extrapolates price changes in the early stage of the experi-

ment (see the upper left panel), but, starting from period t = 6, uses a simple naive 
rule  p  t+2  e

   =  p t   . In other words, in period 6, subject 5 switched from an extrapolative 
to a naive forecasting rule. Subject 1 from the same group used a “smoother,” adap-
tive forecasting strategy, always predicting a price between the previous forecast 
and the previous price realization. These graphs suggest individual heterogeneity in 
forecasting strategies in the same session.

In the oscillating group 6, subject 1 used naive expectations in the first half of the 
experiment (until period 24, see the upper right panel). Naive expectations however, 
lead to prediction errors in an oscillating market, especially when the trend reverses. 
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  , was made immediately after the announcement of the price  p t  .
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In period 25, subject 1 switches to a different, trend-extrapolating prediction strat-
egy. Thereafter, this subject uses a trend-extrapolating strategy switching back to 
the naive rule at periods of expected trend reversal (e.g., in periods 27–28, 32–33, 
37–38, 42– 44, and 47).

Interestingly, participant 3 from another oscillating session 1 starts out predicting 
the fundamental price, i.e.,  p  t+1  e

   =  p  f  = 60, in the first four periods of the experiments 
(see the lower left panel). But since the majority in session 1 predicted a lower price, 
the realized price is much lower than the fundamental, causing participant 3 to switch 
to a different, trend extrapolating strategy. Trend-extrapolating predictions overshoot 
the realized market price at the moments of trend reversal. Toward the end of the 
experiment, participant 3 learned to anticipate the trend changes to some extent.

Finally, in session 7 with dampened price oscillations, subject 3 started out with 
a strong trend extrapolation (see Figure 5, the lower right panel). Despite very large 
prediction errors (and thus low earnings) at the turning points, this participant sticks 
to strong trend extrapolation; only in the last four periods some kind of adaptive 
expectations strategy was used.

Figure 5, therefore, suggests that individual heterogeneity in expectations within 
the same session6 plays a role in explaining the observed phenomena at the aggre-
gate level.

III. Heuristics Switching Model

In this section, we present a simple model with evolutionary selection between dif-
ferent forecasting heuristics. Before describing the model, we recall the most impor-
tant “stylized facts” which we found in the individual and aggregate experimental data:

 (i) Participants tend to base their predictions on past observations following 
simple forecasting heuristics.

 (ii) Individual learning has a form of switching from one heuristic to another.

 (iii) In every session some form of coordination of individual forecasts occurs;  
the rule on which individuals coordinate may be different in different sessions.

 (iv)  Coordination of individual forecasting rules is not perfect and some hetero- 
geneity of the applied rules remains at every time period.

The main idea of the model is simple.7 Assume that there exists a pool of simple 
prediction rules (e.g., adaptive or trend-following heuristics) commonly available 
to the participants of the experiment. At every time period these heuristics deliver 
forecasts for next period’s price, and the realized market price depends upon these 

6 Of course, high coordination of expectations means that the individual expectations were not spread over the 
entire space. Online Appendix C provides additional details (in terms of eigenvalues) of the variety of heuristics 
used in the same experimental session.

7 Our model is built upon the Adaptive Belief Scheme proposed in Brock and Hommes (1997), but with memory 
in the fitness measure and asynchronous strategy updating.
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forecasts. However, the impacts of different forecasting heuristics upon the realized 
prices are changing over time because the participants are learning based on evolu-
tionary selection: the better a heuristic performed in the past, the higher its impact 
in determining next period’s price. As a result, the realized market price and impact 
of the forecasting heuristics co-evolve in a dynamic process with mutual feedback. 
This nonlinear evolutionary model exhibits path dependence explaining coordina-
tion on different forecasting heuristics leading to different aggregate price behavior.

A. The Model

Let  denote a set of H heuristics which participants can use for price predic-
tion. In the beginning of period t, every rule h ∈  gives a two-periods-ahead point 
prediction for the price  p t+1 . The prediction is described by a deterministic function  
f h  of available information:

(10)  p  h, t+1  e
   =  f h (  p t−1 ,  p t−2 ,… ;  p  h, t  e

    ,  p  h, t−1  e
  , …) .

The price in period t is computed on the basis of these predictions according to equa-
tion (1) in the environment without robot traders, or to equation (3) in the environ-
ment with robots. In the latter case, the fractions of robots is determined by (4) as 
before. The average forecast   

_
 p    t+1  e
   in the price equations becomes, in an evolutionary 

model, a population-weighted average of the different forecasting heuristics

(11)   
_
 p    t+1  e
   =  ∑ 

h=1
  

H

    n h, t     p  h, t+1  e
   ,

with  p  h, t+1  e
   defined in (10). The weight  n h, t  assigned to the heuristic h is called the 

impact of this heuristic. The impact is evolving over time and depends on past rela-
tive performance of all H heuristics, with more successful heuristics attracting more 
followers.

Similar to the incentive structure in the experiment, the performance measure of 
a forecasting heuristic in a given period is based on its squared forecasting error. 
More precisely, the performance measure of heuristic h up to (and including) time 
t − 1 is given by

(12)  u h, t−1  = − ( p t−1  −  p  h, t−1  e
   ) 2  + η  u h, t−2  .

The parameter 0 ≤ η ≤ 1 represents the memory, measuring the relative weight 
agents give to past errors of heuristic h. In the special case η = 0, the impact of 
each heuristic is completely determined by the most recent forecasting error; for 
0 < η ≤ 1 all past prediction errors, with exponentially declining weights, affect 
the impact of the heuristics.

Given the performance measure, the impact of rule h is updated according to a 
discrete choice model with asynchronous updating

(13)  n h, t  = δ  n h, t−1  + (1 − δ)   
exp(β  u h, t−1 )  _  Z t−1 

   ,
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where  Z t−1  =  ∑ h=1  
H
   e xp(β  u h, t−1 ) is a normalization factor. In the special case δ = 0, 

(13) reduces to the the discrete choice model with synchronous updating used in 
Brock and Hommes (1997) to describe endogenous selection of expectations. The 
more general case, 0 ≤ δ ≤ 1, gives some persistence or inertia in the impact of 
rule h, reflecting the fact (consistent with the experimental data) that not all the par-
ticipants update their rule in every period or at the same time (see Hommes, Huang, 
and Wang (2005) and Diks and van der Weide (2005)). Hence, δ may be interpreted 
as the average per period fraction of individuals who stick to their previous strategy. 
In the extreme case δ = 1, the initial impacts of the rules never change, no matter 
what their past performance was. If 0 < δ ≤ 1, in each period a fraction 1 − δ of 
participants update their rule according to the discrete choice model. The parameter 
β ≥ 0 represents the intensity of choice measuring how sensitive individuals are to 
differences in strategy performance. The higher the intensity of choice β, the faster 
individuals will switch to more successful rules. In the extreme case β = 0, the 
impacts in (13) move to an equal distribution independent of their past performance. 
At the other extreme β = ∞, all agents who update their heuristic (i.e., a fraction 
1 − δ) switch to the most successful predictor.

Initialization.—The model is initialized by a sequence of initial prices, whose 
length τ is long enough to allow any forecasting rule in  to generate its prediction, 
as well as an initial distribution { n h, 0 }, 1 ≤ h ≤ H of the impacts of different heuris-
tics (summing to 1). Furthermore, the performance measures  u h, t  = 0 for all h and 
for t < τ + 2, which is the first period when they are updated.

Given initial prices, the heuristic’s forecasts for price at time τ + 2 can be com-
puted and, using the initial impacts of the heuristics, the price  p τ+1  is determined. In 
the next period, the forecasts of the heuristics are updated, the fraction of robot trad-
ers is computed if necessary, while the same initial impacts  n h, 0  for the individual 
rules are used, since past performance is not well defined yet. Thereafter, the price  
p τ+2  is computed and the initialization stage is finished. After this initialization stage 
the evolution of the model is well defined: first the performance measure in (12) is 
updated, then, the new impacts of the heuristics are computed according to (13), 
and the new prediction of the heuristics are obtained according to (10). Finally, the 
new average forecast (11) and (if necessary) the new fraction of robot traders (4) are 
computed, and a new price is determined by (1) or (3), respectively.

Example with Four Heuristics.—The evolutionary model can be simulated with 
an arbitrary set of heuristics. Since one of our goals is to explain the three differ-
ent observed patterns in aggregate price behavior—monotonic convergence, perma-
nent oscillations, and dampened oscillations—we keep the number of heuristics as 
small as possible and consider a model with only four forecasting rules. These rules, 
referred to as ADA, WTR, STR, and LAA and given in Table 1, were obtained as sim-
ple descriptions of typical individual forecasting behavior observed and  estimated in 
the experiments.8 As discussed in Section II, these heuristics generate qualitatively 

8 Each of these rules was among those estimated on individual data in HSTV05. In this paper, we combine these 
fixed rules in the Heuristic Switching Model and vary only learning parameters β, η, and δ. One could improve the 
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different dynamics, which allows one to get some non-trivial interaction between 
different heuristics, so that qualitatively different patterns can be obtained.

With the four forecasting heuristics fixed, matched by experimental individual 
forecasting data, there are only three free “learning” parameters in the model: β, 
η, and δ. Provided that these parameters are given, the Heuristic Switching Model  
(HSM) with four heuristics is initialized with two initial prices,  p 0  and  p 1 , and four 
initial impacts  n h, 0  used in periods t = 2 and t = 3.

IV. Empirical Validation

The Heuristic Switching Model exhibits path-dependence and is capable of 
reproducing different qualitative patterns within the same experimental environ-
ment. Anufriev and Hommes (2012) simulate 50-period-ahead forecasts (so-called 
“simulated paths”) of the HSM in three sessions of the HSTV05 experiment. For 
a specific choice of the parameters, β = 0.4, η = 0.7, and δ = 0.9 (obtained after 
some trial and error simulations), but with different initial prices and impacts of 
heuristics, the HSM qualitatively reproduces price behavior in sessions 2, 1, and 7, 
i.e., monotonic convergence, permanent oscillations, and dampened oscillations.9 
In those 50-period-ahead simulations, however, the frequency and amplitude of the 
oscillations were difficult to match.

In this section, we investigate the forecasting performance of the HSM model 
quantitatively both in-sample and out-of-sample. We fit the model to 20 experi-
mental sessions of 4 different treatments in HSTV05 and HSTV08, providing an 
important generality test of the model. The HSM model fits all 20 sessions quite 
well. The section is divided in three parts. We, first, illustrate the one-period-ahead 
forecasts of the model visually. Then we proceed to the rigorous evaluation of the 
in-sample performance of the model, and, finally, look at out-of-sample forecasts 
made by the model.

fit of the model even further if estimation would include both learning parameters and behavioral rules.
9 The initial distribution of agents over the four heuristics, i.e., initial impacts { n 1, 0 ,  n 2, 0 ,  n 3, 0 ,  n 4, 0 }, played a 

crucial role for these price patterns. When the initial impacts of heuristics are distributed almost uniformly, the 
monotonic convergence of session 2 is reproduced. Oscillations of session 1 are obtained when both the WTR and 
STR heuristics have relatively high initial weights (35 percent each). The dampened price oscillation in session 7 
are reproduced when the STR rule has a large initial impact (66 percent).

Table 1—Heuristics Used in the Evolutionary Model

ADA Adaptive heuristic  p  1, t+1  e
   = 0.65  p t−1  + 0.35  p  1, t  e

  

WTR Weak trend-following rule  p  2, t+1  e
   =  p t−1  + 0.4 (  p t−1  −  p t−2 )

STR Strong trend-following rule  p  3, t+1  e
   =  p t−1  + 1.3 (  p t−1  −  p t−2 )

LAA Anchoring and adjustment  p  4, t+1  e
   = 0.5 (  p  t−1  

av
   +  p t−1 ) + (  p t−1  −  p t−2 )

 rule with learning anchor

AA Anchoring and adjustment  p  4, t+1  e
   = 0.5 (  p  f  +  p t−1 ) + (  p t−1  −  p t−2 )

 rule with fixed anchor

notes: In simulations in Figures 6–8, the first four heuristics are used. The LAA heuristic is obtained from the sim-
pler AA heuristic, by replacing the (unknown) fundamental price  p   f  by the sample average  p  t−1  av

  .
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A. One-Period-Ahead Simulations

The left panels in Figure 6 suggest that the switching model with four heuristics 
fits the experimental data from the Ro-HF HSTV05 experiments quite nicely. The 
upper parts of the panels compare the experimental data with the one-step-ahead 
predictions of the HSM for the benchmark parameter values β = 0.4, η = 0.7, and 
δ = 0.9. We stress that, at this stage, no fitting exercise has been performed. In each 
session and every period experimental data (dots) are quite close to the prediction 
given by the HSM (line with squares).

In all these simulations, the initial prices are chosen to coincide with the initial 
prices in the first two periods in the corresponding experimental group, while the 
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Figure 6. Laboratory Experiments and the HSM in Three Sessions from 
Ro-HF HSTV05 Experiment

notes: Three sessions from different experiments are shown. The upper parts of left panels show prices for experi-
ments with corresponding one-step-ahead predictions of the HSM. The lower parts show predictions and forecasting 
errors (inner frames) of the four heuristics. The right panels show the evolution of the impacts of the four heuristcs. 
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initial impacts of all heuristics are equal to 0.25. At each step, in order to compute 
the heuristics’ forecasts and update their impacts, past experimental price data are 
used, which is exactly the same information that was available to participants in the 
experiments. The one-period-ahead forecasts can follow easily the monotonically 
converging patterns as well as the sustained or dampened oscillatory patterns, start-
ing out from a uniform initial distribution of forecasting rules.

The lower parts of the left panels in Figure 6 show that the heuristics forecasts 
are correlated, so that the model reproduces coordination of expectations of the 
participants. The frames of the lower panels display the prediction errors of the four 
heuristics. These errors are of the same order as in the experiment (see Figure 3). 
Behavioral heuristics applied to non-equilibrium dynamics do not eliminate the 
forecasting errors in line with experimental evidence.

The right panels of Figure 6 show the transition paths of the impacts of each of 
the four forecasting heuristics. In the case of monotonic convergence (session 5, 
upper panel), the impacts of all four heuristics remain relatively close, although 
the impact of adaptive expectations gradually increases and slightly dominates the 
other rules in the last 25 periods. In contrast to the previous case, in experimen-
tal session 6 the two initial prices exhibited an increasing trend. Consequently the 
trend-following rules and the learning anchor and adjustment heuristic increase their 
impacts (middle panels). However, the trend rule misses the turning points and its 
impact gradually decreases. The LAA heuristic with a more flexible anchor predicts 
price oscillations better than the static STR and WTR rules. The impact of the LAA 
heuristic gradually increases, rising to more than 80 percent after 40 periods. The 
HSM thus explains coordination of individual forecasts on a LAA rule enforcing 
persistent price oscillations around the long run equilibrium level.

Finally, in the simulations for session 4 with dampened oscillations (lower 
 panels), the initial price trend is so strong that the STR rule clearly dominates dur-
ing the first 20 periods of simulation. To some extent this rule reinforces a trend in 
prices, but the presence of other heuristics and the impact of the robot traders lead to 
a trend reversal around period 12. The STR misses this turning point and the LAA 
rule starts to increase its share, eventually overcoming the STR rule. The mixture of 
the LAA and STR rules produces time series which gives some space to other rules 
as well, and the price oscillations slowly dampen. As a result, the ADA rule, which 
was the worst until period 30, starts to increase its impact. Eventually it overcomes 
the LAA rule explaining price stabilization.

The dynamics in sessions 5, 6, and 7 of the Ro-HF HSTV05 experiment were 
qualitatively similar to the dynamics in sessions 2, 1, and 4, respectively. It is not 
surprising, therefore, that the fit by the HSM and the dynamics of impacts is similar, 
see online Appendix D. Figure 7 illustrates the fit of the HSM for the remaining 
session 3 of the Ro-HF experiment. The price in this session started with moder-
ate oscillations, then stabilized at a level below the fundamental price 60, but sud-
denly fell in period t = 41 likely due to a typing error by one of the participants.10 
Our nonlinear switching model, of course, misses the typing error, but nevertheless 
matches the overall pattern before and after the unexpected price drop.

10 In fact, one of the participants predicted 5.25 for period 42, whereas his/her five previous predictions all were 
between 55.00 and 55.40. Perhaps the intention was to type 55.25.
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We demonstrated that the HSM fits all sessions of the Ro-HF environment quite 
nicely. How robust are these results? Figure 8 shows the fit and the evolution of 
impacts for typical sessions from the three other treatments with modified experi-
mental environments. The upper panels displays session 8 of the Ro-LF HSTV05 
experiment with a fundamental price of 40 instead of 60. Slowly increasing price 
oscillations are dominated by the STR rule, but when the frequency of trend-rever-
sals increases, the LAA rule takes over again. The middle panel illustrates the HSM 
for session 12 of the NoRo HSTV05 experiment without robot traders. Large ampli-
tude price oscillations, with prices almost reaching their maximum 100 and mini-
mum 0, arise, but prices stabilize toward the end of the experiment. The evolution 
of the impacts of the four forecasting heuristics is similar to the case of dampening 
price oscillations considered before (see the lower panels of Figure 6), with the STR 
rule initially dominating the market, followed by the LAA rule taking over around 
period 25 during the price oscillations, and the ADA rule finally dominating toward 
the end, when the price stabilizes.

Finally, the lower panel displays session 2 of the LFR HSTV08 experiment with 
large forecasting range. The asset price oscillates with very large amplitude, with a 
long lasting trend of more than 25 periods with prices rising close to their maximum 
1,000, after which a crash follows to values close to their minimum 0, and the mar-
ket starts oscillating. The evolution of the impacts of the 4 forecasting heuristics is 
similar as before, with the STR rule taking the lead, increasing its share to more than 
90 percent after 25 periods during the long-lasting price bubble. When the upper 
forecasting bound is met, the trend cannot be sustained any longer and the share of 
the STR rule declines quickly. The LAA rule takes over and large amplitude oscil-
lations are observed. The fact that our nonlinear switching model nicely captures all 
patterns in these different groups shows that the model is robust concerning changes 
of the asset pricing market environment.11

11 Online Appendix D contains analogous plots for all other groups of the HSTV05 and HSTV08 experiments.
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To summarize, the one-step-ahead simulations of the HSM match both con-
verging and oscillating prices closely and produce clear differences in the evolu-
tion of impacts. In the case of monotonic convergence and constant oscillations 
we observe a self-confirming property: more coordination on one rule (ADA in the 
case of convergence and LAA in the case of oscillations) leads to price dynamics 
which reinforces this rule. For the sessions with the dampened oscillations, one step 
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ahead forecast produces a rich evolutionary selection dynamics. These sessions go 
through three different phases where the STR, the LAA, and the ADA heuristics 
subsequently dominate. The STR dominates during the initial phase of a strong 
trend in prices, but starts declining after it misses the first turning point of the trend. 
The LAA does a better job in predicting the trend reversal, but if it fails to keep the 
amplitude of oscillations constant it may be taken over by a stabilizing ADA rule.

B. Forecasting Performance

A measure of model fit are the mean squared errors of simulated one-step ahead 
predictions. Table 2 compares these mean squared errors (MSEs) for several experi-
mental sessions12 for nine different models: the RE fundamental prediction, five 
homogeneous expectations models (naive expectations, and each of the four heu-
ristics of the switching model), and three heterogeneous expectations models with 
four heuristics, namely, the model with fixed fractions (corresponding to δ = 1), 
the switching model with benchmark parameters β = 0.4, η = 0.7, and δ = 0.9, 
and, finally, the “best” switching model fitted by minimization of the MSE over 
the parameter space (the last three lines in Table 2 show the corresponding optimal 
parameter values).13 The MSEs for the benchmark switching model are shown in 
bold and, for comparison, for each session the MSEs for the best among the four 
heuristics are also shown in bold. The best among the nine models for each session 
is shown in italic and it is always the best fitted HSM.

An immediate observation from Table 2 is that, for all sessions, the fundamental 
prediction rule is by far the worst. This is due to the fact that in all experiments real-
ized prices deviate persistently from the fundamental benchmark. Another obser-
vation is that, all models explain the monotonically converging groups very well, 
with very low MSE. The homogeneous expectations models with naive, adaptive or 
WTR expectations fit the monotonic converging group 5 particularly well. However, 
only adaptive expectations outperform the benchmark switching model. For the 
 permanent as well as the dampened oscillatory sessions 6 and 8, the flexible LAA 
rule is the best homogeneous expectations benchmark, but the benchmark switching 
model has an even smaller MSE. In session 8 from the Ro-LF HSTV05 experiment 
with low fundamental price, the WTR heuristic is the best among homogeneous 
rules, but the HSM also outperforms this model. In the sessions without robots, as 
in the NoRo HSTV05 treatment and especially in the LFR HSTV08 treatment, all 
homogeneous models produce very large MSEs. The models often under- or over-
estimate the trend and also miss the turning points of trend-reversal. The MSEs of 
the switching model are much smaller in the sessions of the NoRo HSTV05 treat-
ment and comparable with the best homogeneous model (STR heuristic) in the LFR 

12 The MSEs are computed over 47 periods for t = 4, … , 50 in the sessions of HSTV05 experiment and over 
46 periods, for t = 4, … , 49, in the sessions of HSTV08 experiments. We skip the errors of the first four periods in 
order to minimize the impact of the initial conditions (i.e., the initial impacts of the heuristics) for the HSM. Period 
t = 4 is the first period when the prediction is computed with both the heuristics’ forecasts and the heuristics’ 
impacts being updated based on experimental data. For comparison, in all other models we compute errors also 
from t = 4.

13 Analogous tables for the remaining sessions can be found in online Appendix D.
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HSTV08 treatment. When the learning parameters of the HSM model are chosen to 
minimize the MSE for the corresponding session, the model produces the smallest 
MSE over all alternative specifications,14 though an improvement of fit with respect 
to the benchmark HSM is not as large as when the benchmark HSM is compared 
with the best homogeneous model. This suggests that the good fit of the switching 
model is fairly robust w.r.t. the model parameters.

The values of the parameters in Table 2 show that either η or δ should be high 
in order to explain the experimental data. High values of δ imply that inertia in 
individual choices played a big role in the experiment. In other words, subjects did 
not exhibit an immediate reaction to the difference in relative performances of the 
rules, but only switched occasionally. High values of η also generate persistence but 
through another channel. When memory η is high it means that the performances 
of different rules are slowly updated and the rules which used to be good in the past 
are not discarded immediately. It might not be easy for a subject to remember past 
performances, and lower values of η may reflect this cost of memory. Finally, the 
intensity of choice, β, reflects how fast the switching reaction is on differences in 
performances of different rules. In the benchmark case, β is quite low but in some 
sessions (5, 6, and 8) the fit improves quite a lot when higher values of β are used. 
It seems that in these experimental sessions subjects were able to coordinate on the 
common forecasting rules faster than our stylized model predicts in the benchmark 
case.

We stress that the evolutionary Heuristic Switching Model is able to make the 
best out of different heuristics. Indeed, in different sessions (and treatments) of the 
learning to forecast experiment different homogeneous expectations models pro-
duce the best fit of the price dynamics. However, the switching model produces an 
even better fit than the best homogeneous model.

C. Out-of-Sample Forecasting

Let us now turn to the out-of-sample validation of the model. In order to eval-
uate the out-of-sample forecasting performance of the model, we first perform a 
grid search to find the parameters of the model minimizing the MSE for periods 
t = 4, … , 43 and then compute the forecasting errors of the fitted model for the 
remaining periods (7 in the case of the HSTV05 experiments and 6 in the case of 
the HSTV08 experiments). The results are reported in the upper part of Table 3 for 
each session. The first two lines show the in-sample MSE of the fitted model and 
the corresponding values of the parameters. The next lines give the values of the 
forecasting errors. In the middle part of the table, we report the results of the same 
procedure performed for the switching model with benchmark parameters. Finally, 
we compare our structural behavioral learning model with a simple non-structural 
model with three parameters. To this purpose we estimate an AR(2) model to the 
data up to period t = 43 and show in the bottom part of Table 3 the in-sample MSE 
and out-of-sample prediction errors.

14 This holds for all 20 sessions of HSTV05 and HSTV08 experiments, except session 5 in the LFR HSTV08 
treatment, where the STR heuristic outperforms the HSM. See online Appendix D.
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For the converging groups of the Ro-HF treatment (e.g., session 5) the prediction 
errors typically increase with horizon but remain very low and comparable with the 
errors computed in-sample. This is not surprising given that the qualitative property 
of the data (i.e., monotonic convergence) does not change in the last periods, and 
that the adaptive heuristic, which generates such convergence, takes the lead already 
around period 25. In the oscillating groups (session 6 of the Ro-HF and session 8 
of the Ro-LF), the out-of-sample errors generated by the switching model are vary-
ing with the time horizon and typically larger than the in-sample error. Even if the 
switching model with leading LAA heuristic captures oscillations qualitatively, the 
prediction errors can become large when the oscillations predicted by the model 
have a different frequency than the oscillations in the experimental session, so that 
the prediction goes out of phase. The prediction errors for sessions with damping 
oscillations (session 4 of the Ro-HF and session 12 of the NoRo) are not very high 
when compared with the in-sample errors. This is because the price in these sessions 
converges toward the end of the experiment. At the end of the in-sample period, i.e., 
at t = 43, the switching model already selects the ADA heuristic, which generates 
the same behavior as in the experiment.

Comparing the forecasting errors of the switching and AR(2) models, we con-
clude that the former model is better than the latter, on average. More specifically, 
in the converging session 5 and oscillating session 6 of the Ro-HF treatment the 
out-of-sample performances are very similar, but in all other sessions (including 
those which are not shown in Table 3) the different variations of the switching model 
outperform the AR(2) model out-of-sample. The nonlinearity and behavioral foun-
dation allows the HSM to adapt faster than the AR(2) model to changes in the price 
dynamics. In session 8 of the Ro-LF, the oscillations become more pronounced 
toward the end of the experiment. The HSM model captures this effect, while AR(2) 
does not. As a result, the AR(2) model produces errors larger than 7 in absolute 
value, which would lead to 0 earnings in the experiment, see equation (2), whereas 
the HSM does not have such large errors.

Table 2—MSE of the One-Step ahead Forecast for 7 Sessions of Different LtFEs

Ro-HF Ro-LF NoRo LFRa 

Specification 5 6 4 3 8 12 2

Fundamental prediction  10.82  9.32  300.99  49.54  129.31  571.59  138,314.09 
Naive heuristic  0.05  2.45  141.06  2.38  31.82  257.72  15,896.48 
ADA heuristic  0.04  4.61  210.33  3.59  59.28  358.26  28,323.14 
WTR heuristic  0.14  1.13  92.22  1.84  15.48  203.06  8,995.96 
STR heuristic  0.66  0.81  90.59  3.40  10.27  182.35  2,909.13 
LAA heuristic  0.48  0.66  66.26  1.92  16.84  159.24  16,065.67 
4 heuristics (δ = 1)  0.17  0.66  67.66  1.55  11.08  141.08  7,459.75 
4 heuristics (Figs. 6–7)  0.11  0.29  41.34  1.48  3.21  85.51  2,931.13 
4 heuristics (best fit)  0.03  0.16  35.35  1.46  2.23  76.44  2,815.42 
β ∈ [0, 10]  10.00  10.00  0.13  0.39  10.00  0.58  0.92 
η ∈ [0, 1]  0.95  0.05  0.92  0.49  0.96  0.88  0.70 
δ ∈ [0, 1]  0.28  0.76  0.11  0.87  0.82  0.45  0.93 

note: Nine different model specifications are compared.
 a For the LFR HSTV08 experiment MSE is computed over 46 periods.
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The largest out-of-sample errors are observed in the sessions of the LFR treat-
ment, see also Table 3 from Appendix D. However, in all the sessions the out-of-
sample errors of the HSM are comparable and often even smaller than the in-sample 
errors. Furthermore, the errors of the HSM are smaller than the analogous prediction 
errors of the AR(2) model.

To further investigate one- and two-periods-ahead, out-of-sample forecasting 
performance, we fit the model on a moving sample and compute an average of the 
corresponding squared prediction errors. The results of this exercise for the same 
three models (best fit, benchmark, and AR(2)) are presented in Table 4. The small-
est forecasting errors within the same class (e.g., one-period ahead in session 4) are 
shown in italic. It turns out that our nonlinear switching model predicts the experi-
mental data better than the simple AR(2) model for both one- and two-periods-ahead 
predictions in almost all sessions.15 In many cases the difference in performance is 
substantial.

15 The AR(2) model outperforms both the benchmark and the best-fitted HSMs in session 7 of the Ro-HF treat-
ment (one period ahead), session 14 of the NoRo treatment (two periods ahead), session 3 of the LFR treatment 
(one period ahead) and session 5 of the LFR treatment (both one and two periods ahead).

Table 3—Out-of-Sample Performance of the Heuristic Switching Model and the AR(2) Model

Specifi-
cation

Ro-HF Ro-LF NoRo LFR

5 6 4 3 8 12 2

Best fit switching model
MS E 40   0.03  0.17  39.10  1.66  1.19  89.19  2,856.01 
(β, η, δ)  (10.0, 1.0, 0.3)  (10.0, 0.0, 0.7)  (0.1, 0.9, 0.1)  (0.3, 0.5, 0.9)  (0.8, 1.0, 0.9)  (0.1, 0.9, 0.4)  (0.5, 0.7, 0.9) 
1 p ahead  − 0.06  0.16  − 2.26  − 0.92  3.57  2.02  − 30.69 
2 p ahead  0.15  − 0.44  1.18  − 0.00  − 1.88  − 0.95  22.76 
3 p ahead  0.31  − 1.76  11.05  0.53  − 6.53  − 0.09  − 49.30 
4 p ahead  0.50  − 2.73  13.58  0.69  − 10.38  1.24  − 28.81 
5 p ahead  0.44  − 3.17  8.85  0.23  − 8.03  3.92  45.79 
6 p ahead  0.50  − 2.68  3.53  − 0.56  0.33  4.47  163.32 
7 p ahead  0.72  − 0.91  − 0.41  − 0.59  8.95  3.36 NA

Benchmark switching model
MS E 40   0.10  0.28  47.42  1.68  2.34  99.65  2,939.01 
(β, η, δ)  (0.4, 0.7, 0.9)  (0.4, 0.7, 0.9)  (0.4, 0.7, 0.9)  (0.4, 0.7, 0.9)  (0.4, 0.7, 0.9)  (0.4, 0.7, 0.9)  (0.4, 0.7, 0.9) 
1 p ahead  − 0.29  0.72  − 3.15  − 0.82  5.01  − 0.16  − 43.61 
2 p ahead  0.31  1.48  − 3.10  0.20  2.35  0.57  − 8.75 
3 p ahead  0.31  1.15  3.45  0.78  0.10  3.08  − 52.77 
4 p ahead  0.45  − 0.09  5.82  0.93  − 3.43  4.86  − 29.69 
5 p ahead  − 0.05  − 2.07  4.82  0.41  − 3.25  7.27  57.36 
6 p ahead  0.13  − 3.76  4.61  − 0.46  − 0.12  7.95  189.63 
7 p ahead  0.74  − 3.75  4.07  − 0.60  2.81  6.97 NA

AR(2) model
MS E 44   0.23  0.27  65.34  1.94  1.56  159.52  4,638.42 
(β, η, δ)  (6.8, 0.8, 0.1)  (18.9, 1.6, −1.0)  (26.4, 1.3, −0.7)  (14.8, 1.2, −0.4)  (8.0, 1.9, −1.1)  (22.7, 1.2, −0.6)  (42.4, 1.7, −0.8) 
1 p ahead  − 1.00  − 1.02  − 3.65  − 2.05  2.16  − 2.61  60.30 
2 p ahead  − 0.44  − 1.63  − 1.49  − 1.69  − 8.18  − 0.47  282.72 
3 p ahead  − 0.48  − 2.18  7.63  − 1.52  − 22.84  6.07  292.09 
4 p ahead  0.40  − 1.15  11.65  − 0.64  − 38.05  12.20  164.78 
5 p ahead  − 0.18  − 0.16  9.25  − 0.82  − 44.28  15.46  49.54 
6 p ahead  − 0.87  − 0.09  5.60  − 2.22  − 37.64  13.91  − 34.08 
7 p ahead  − 0.47  0.34  2.57  − 2.54  − 17.49  10.44 NA
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V. Conclusion and Discussion

The time evolution of aggregate economic variables, such as stock prices, is 
affected by market expectations of individual agents. Neoclassical economic the-
ory assumes that individuals form expectations rationally, thus enforcing prices to 
track economic fundamentals and leading to an efficient allocation of resources. 
Laboratory experiments with human subjects have shown however that individu-
als do not behave fully rational, but instead follow simple heuristics. In laboratory 
 markets prices may show persistent deviations from fundamentals similar to the 
large swings observed in financial stock prices.

Our results show that performance-based evolutionary selection among simple 
forecasting heuristics can explain coordination of individual forecasting behavior 
leading to three different aggregate outcomes observed in identically organized 
treatments of recent laboratory market forecasting experiments: slow monotonic 
price convergence, oscillatory dampened price fluctuations, and persistent price 
oscillations. Furthermore, we show that the same model also fits other learning-to-
forecast experiments reasonably well.

In our Heuristic Switching Model, forecasting strategies are selected every period 
from a small population of plausible heuristics, such as adaptive expectations and 
trend-following rules. Individuals adapt their strategies over time, based on the rela-
tive forecasting performance of the heuristics. As a result, the nonlinear evolutionary 
switching mechanism exhibits path dependence and matches individual forecasting 
behavior as well as aggregate market outcomes in the experiments. We showed that 
none of the homogeneous expectation models constituting the HSM fit all different 
observed patterns. However, different heuristics fit the different patterns observed in 
different sessions. The HSM not only provides a simultaneous explanation for the 
aggregate outcomes in all different sessions, but also outperforms the best homo-
geneous model in almost every session. Our results are in line with recent work on 
agent-based models of interaction, and contribute to a behavioral explanation of 
market fluctuations.

Table 4—Out-of-Sample Performance of the Heuristic Switching Model and the AR(2) Model

Ro-HF Ro-LF NoRo LFR

Specification 5 6 4 3 8 12 2

Best fit switching model
Average MS E 40   0.04  0.17  45.19  1.75  1.90  84.75  2,507.10 

1 p ahead  0.03  0.15  5.75  0.38  15.00  4.24  2,258.12 
2 p ahead  0.09  0.92  12.17  0.40  26.87  6.06  4,727.68 

Benchmark switching model
Average MS E 40   0.10  0.29  50.74  1.78  3.24  103.53  2,548.28 

1 p ahead  0.15  0.41  7.69  0.42  9.82  5.74  2,291.63 
2 p ahead  0.23  1.90  16.22  0.56  9.51  17.72  5,322.47 

AR(2) model
average MS E 44   0.24  0.25  65.75  1.99  3.66  159.92  4,362.90 

1 p ahead  0.44  0.56  13.46  1.43  35.02  13.93  11,880.66 
2 p ahead  0.40  1.49  44.65  2.33  203.34  63.11  48,065.41 

note: The averaged (over moving window of 40 periods) in-sample MSE and averaged (over 7 forecasts) 1- and 
2-periods ahead squared forecasting errors are shown. 
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The HSM is, to our best knowledge, the first learning model explaining different 
time series patterns in the same laboratory environment. Our approach is similar 
to many game-theoretical learning models (often referred as “reinforcement learn-
ing”), see, e.g., Arthur (1991), Erev and Roth (1998), and Camerer and Ho (1999). 
These models were developed as a response to experimental evidence that individu-
als often do not play or learn to play equilibrium predictions such as Nash equilib-
rium, or its refinements. Our market environment is quite different from the strategic 
environments studied in game theory, however. For example, agents in our frame-
work do not have well-defined strategies, other than predicting a number between 
0 and 100 in two decimals. Other important differences are that the strategies used 
in our switching model are state dependent and that individuals do not know the 
“payoff matrix,” which moreover is changing over time in a path-depending manner.

The model presented in this paper is one of the first models simultaneously 
explaining individual micro behavior as well as aggregate macro behavior. Recently, 
Fuster, Laibson, and Mendel (2010) proposed a somewhat similar model of “natural 
expectations,” which are the weighted average of a so-called intuitive, extrapola-
tive expectations and rational expectations. Their model can successfully explain a 
number of stylized facts of macroeconomic time series. Our heuristics correspond to 
different plausible parametrization of their intuitive expectations, but our approach 
to discipline-bounded rationality is different. Instead of fixing the intuitive rule on 
the basis of a misspecified estimation of the true model as in Fuster, Laibson, and 
Mendel (2010), we fix the heuristics’ parameters on the basis of experimental esti-
mations, but allow agents to change their heuristics dynamically. Of course, funda-
mental expectations can also be included into the set of the rules. In a related paper, 
Hommes and Lux (forthcoming) explain learning to forecast experiments in the 
classical cobweb (hog-cycle) market environment, using a heterogeneous expecta-
tions model, where individual agents use a Genetic Algorithm (GA) learning. The 
GA-learning model captures all stylized facts of the cobweb markets, both at the 
individual and at the aggregate level, across different experimental treatments.

The cobweb market environment is an example of a negative feedback system, 
where higher expectations lead to lower prices. In contrast, the environment consid-
ered in this paper has positive feedback, because higher expectations lead to higher 
price realizations. The type of feedback affects the aggregate behavior signifi-
cantly. For instance, Heemeijer et al. (2009) report learning-to-forecast experiments 
where subjects had to predict the price for the same period (i.e., they submitted 
one-period-ahead forecasts) in environments with different feedback. In the ses-
sions with negative feedback the realized market price converged to the fundamental 
level very quickly and stayed there for the rest of the experiment. In contrast, in 
the sessions with positive feedback the price exhibited persistent fluctuations and 
long lasting deviations from the fundamental level. Anufriev, Hommes, and Philipse 
(forthcoming) apply the HSM with only two heuristics to these experimental data. 
The two heuristics are adaptive expectations and a trend-following rule, and the 
HSM coordinates on one of these heuristics depending on the feedback. Under 
negative feedback the adaptive rule performs better and the model endogenously 
coordinates on this rule. Under positive feedback, the trend-following rule per-
forms better and the HSM selects this heuristic thus reinforcing price  oscillations. 
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Anufriev, Hommes, and Philipse (forthcoming) estimate the model and show that it 
outperforms several other models, including those with homogeneous expectations. 
In this way, it is shown that in some situations (with one-period-ahead predictions, 
in particular), the HSM with two heuristics only can explain aggregate dynamics 
under different feedback structures of expectations.

In recent work, Assenza et al. (2011) fit the HSM to learning-to-forecast experi-
ment in a macroeconomic, New Keynesian framework with feedback from output 
and inflation expectations. A more systematic investigation in which market envi-
ronments other than the asset pricing framework our nonlinear heuristics switching 
model can explain individual forecasting behavior as well as aggregate price behav-
ior is beyond the scope of the current paper. We conjecture, however, that the simple 
HSM analyzed in this paper works well in market environments with some structure 
and persistence in price fluctuations, either in the form of converging prices or in the 
presence of price oscillations and (temporary) trends.

In future work, we intend to apply our HSM to financial market data with more 
irregular and persistent price time series in order to see whether they can pick up 
temporary trends in asset prices and improve financial forecasting. For this applica-
tion the set of heuristics should be augmented by more sophisticated rules, those 
which are applied in financial markets. Allen and Taylor (1990) and Frankel and 
Froot (1990) provide evidence based on survey data, that simple extrapolation heu-
ristics similar to those we employ, are used in real markets. An important challenge 
is to see whether strategy switching models can improve financial forecasting.
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