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Abstract

In an asset-pricing model, risk-averse agents need to forecast the con-
ditional variance of a stock’s return. A near-rational restricted perceptions
equilibrium exists in which agents believe prices follow a random walk with
a conditional variance that is self-fulfilling. When agents estimate risk in
real-time, recurrent bubbles and crashes can arise. These effect are stronger
when agents allow for ARCH in excess returns.
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1 Introduction

An open question in models of asset pricing is the role played by movements
in risk premia in generating bubbles and crashes (Greenspan (2005)). Branch
and Evans (2011), building on the adaptive learning literature in asset pricing
(e.g. Timmermann (1993), Brock and Hommes (1998), Evans and Honkapohja
(2001), Lansing (2010) and Adam, Marcet, and Nicolini (2010)), replace rational
expectations with an econometric learning rule. A feature of Branch-Evans is that

∗We thank Robert Engle for the suggestion to examine the role of ARCH learning in bubbles
and crashes. Financial support from National Science Foundation Grant no. SES-1025011 is
gratefully acknowledged.
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agents estimate risk – the conditional variance of net stock returns – and when
this is combined with estimating stock returns, adaptive learning can generate
bubbles and crashes. A key mechanism is that adaptive learning introduces serial
correlation that would not otherwise exist, which can lead agents’ forecasting rule
to track this correlation with an approximately self-fulfilling random-walk model.

This paper focuses in more detail on the role of risk in propagating bubbles
and crashes, and in particular examines the role of ARCH effects that may be
present. We begin by attributing to traders random-walk beliefs about stock
prices. We then assume that traders estimate the risk of the stock by formulating
one of two econometric models: a simple recursive algorithm and an ARCH model
for the conditional variance of stock returns. It is not obvious, a priori, whether
an econometric learning rule designed to account for ARCH effects (as in Engle
(1982)) will weaken or strengthen the bubble effect. We find that when agents
allow for ARCH effects the tendency for learning about risk to generate bubbles
and crashes actually appears strengthened.

We proceed as follows. To begin, we demonstrate that there exists a unique,
stable restricted perceptions equilibrium under random-walk beliefs. We then
show that when agents use a constant gain (or “perpetual learning”) algorithm,
bubbles and crashes can emerge. ARCH effects can arise from agents’ updating
of their risk estimates, and these effects are stronger when agents estimate an
ARCH model. Bubbles in this setting emerge as sequences of shocks push agents’
estimates of risk down – in the case of the ARCH model agents explicitly forecast
that this lower risk will persist into the near future. The lower estimates of
risk leads to prices being bid up, buoyed by the feedback from random walk
beliefs. This cycle persists until agents’ estimates of risk eventually increases
as the dynamics push estimates back towards the stable equilibrium value. The
process as a whole generates recurrent bubbles and crashes.

2 Asset Pricing with Random-Walk Beliefs

We follow De Long, Shleifer, Summers, and Waldmann (1990) and adopt a mean-
variance linear asset pricing model with one risky asset that yields dividends {yt}
and trades at the price pt, net of dividends, and a risk-free asset that pays the
rate of return R = β−1 > 1. The demand for the risky asset is

zdt =
Êt(pt+1 + yt+1)− β−1pt

aσ2
t
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where Êt is the conditional expectations operator based on the agent’s subjective
probability distribution and σ2

t is the corresponding perceived conditional variance
of excess returns pt+1+yt+1−β−1pt. The equilibrium price pt is given by zdt = zst,
where zst is the (random) supply of the risky asset at time t.

It follows that
pt = βÊt (pt+1 + yt+1)− βaσ2

t zst

We assume that yt = y0 + εt and that zst = {min(s0,Φpt)} · Vt where εt, Vt are
uncorrelated iid shocks with EVt = 1, s0 > 0 and Φ = s0/(p̄ξ), where p̄ is the
mean stock price in a fundamentals based equilibrium and 0 < ξ < 1.1 Share
supply is exogenous except when price falls well below its fundamental value.
This assumption provides a flexible price floor in the event of a stock-price crash.
We will assume throughout that agents know the true dividend process, so that
Êtyt+1 = y0.

In Branch and Evans (2011), we studied the price dynamics under learning,
about both expected future price pt+1 and the risk of the stock σ2

t , and found
that under constant-gain learning the model could generate recurring bubbles
and crashes. A key to these results was that under learning agents might believe,
often for a long stretch of time, that stock prices were following a random walk.
Furthermore we found that these beliefs are nearly self-fulfilling. The current
paper assumes that agents perceive stock prices to follow a random-walk process,
and then use an econometric model to uncover the stock’s riskiness in real time.

We also assume that under random-walk beliefs the conditional variance σ2
t =

Êt

(

pt+1 − Êtpt+1 + yt+1 − Êtyt+1

)2
is believed to be given by

σ2
t = Êt(∆pt+1 + εt+1)

2.

Before turning to the dynamics under learning we first solve for the restricted
perceptions equilibrium (RPE), in which agents view ∆pt+1+εt+1 as an iid process
and treat σ2

t as a constant over time, σ2
t = σ2 = E(∆pt+1 + εt+1)2. We then look

for the the self-fulfilling value of σ2.

When agents hold random-walk beliefs about stock prices, the actual process
for stock prices is pt = βy0+βpt−1−βaσ2zst. Here we have assumed that current
price pt is not part of the information set when expectations of pt+1 are formed,
so that under random-walk beliefs Êtpt+1 = Êtpt = pt−1. The actual price process
can be rewritten as

pt = β(y0 − aσ2s0) + βpt−1 − βaσ2vt, (1)

1In simulations, we set ξ = 0.1 which implies share supply is exogenous except when price
falls below 10% of its mean value.
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where vt is the zero-mean shock defined by Vt = 1+vt/s0.2 Note that for 0 < β < 1
close to β = 1 random-walk beliefs are self-fulfilling. The σ2 implied by these
beliefs is determined by

E(∆pt+1)
2 + σ2

ε

for the price process (1). Noting that ∆pt = β∆pt−1 − βaσ2∆vt, it is straightfor-
ward to compute the variance of ∆pt+1, which implies a mapping from perceived
σ2 to actual σ2 of the form

σ2 =
2(aβσ2)2σ2

ν

1 + β
+ σ2

ε ≡ T (σ2),

where σ2
ν denotes the variance of vt. An RPE is then a fixed point of the T-map,

i.e. σ2 = T (σ2). It follows that in a RPE

σ2 =
1 + β ±

√

(1 + β)2 − 8a2β2(1 + β)σ2
εσ

2
ν

4a2σ2
νβ2

There are two positive roots. However, Proposition 1 below demonstrates that
(only) the smaller root, σ2

L is stable under learning.

It is worth remarking that in a fundamentals-based rational expectations equi-
librium (REE), the mean stock price is β (y0 − aσ2s0) /(1− β), which is identical
to the mean stock price in a RPE. However, the equilibrium risk σ2 is higher in
a RPE than in the REE. In addition, as discussed below, learning about risk can
give rise to additional stock-price dynamics that are qualitatively very different
from the RE.

3 Two Learning Models for Risk

This section develops two theories of how agents might econometrically estimate
risk and demonstrates that the RPE is stable under learning.

A simple recursive model for estimating the risk of a stock is given by3

σ2
t = σ2

t−1 + γt
[

(pt − pt−1 + εt)
2 − σ2

t−1

]

(2)

For the stability results in this section, the gain γt is set to γt = t−1 so that
(2) corresponds to the recursive least squares estimator for a regression of the

2We are assuming that Φ and the support of the zst are sufficiently small so that in the RPE
we always have zst = s0Vt.

3A similar learning rule was employed by Branch and Evans (2011) and LeBaron (2010).
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conditional variance of returns on a constant. In the numerical simulations below
we assume a constant gain γt = γ, where 0 < γ < 1 is small, so that the recursive
algorithm is a form of discounted least squares. Decreasing gains, such as γt = t−1,
allow for convergence to the RPE and is thus suitable for studying the local
stability of an equilibrium. Constant gains are preferable in environments where
agents might be concerned with structural change and also have the advantage of
being a time-invariant, or perpetual, learning rule.

An alternative learning algorithm arises when agents perceive the conditional
variance of returns to follow an autoregressive conditional heteroskedasticity (ARCH)
process. Suppose that agents believe that risk follows the perceived law of motion

σ2
t = α0 + α1σ

2
t−1 + ηt

where ηt is a perceived white noise error. Agents estimate their ARCH coefficients
(α0,α1) by regressing squared excess returns on a constant and m of its own
lagged values. Let θ′ = (α0,α1), zt = pt − pt−1 + εt, z̄2t = (1/m)

∑m−1
j=0 z2t−j and

X ′

t = (1, z̄2t ). Then a recursive ARCH estimator is

θt = θt−1 + γtS
−1
t−1Xt−1

(

z2t − θ′t−1Xt−1

)

(3)

St = St−1 + γt+1 (XtX
′

t − St−1)

Here St is an estimate of EXtX ′

t, the second moment matrix of the regressors.
Combining (1) with learning algorithm (2) or (3) leads to a fully specified data-
generating process under learning.4 We have the following stability result for the
risk estimator (2).

Proposition 1 Under the adaptive learning algorithm (2) with exogenous share
supply and gains γt = t−1, the restricted perceptions equilibrium σ2 = σ2

L is locally
stable under learning.

Analytic results are unavailable for algorithm (3), however, numerical analysis
shows that σ2 = σL is stable under ARCH learning.

4 Bubbles, Crashes, and Risk

In this section, we consider a constant gain learning version of the model and
use numerical simulations to demonstrate the theoretical possibility that stock

4For simplicity we have specified the ARCH as a parsimonious ARCH(m) model in which
the m slope coefficients are constrained to be equal. The results are not greatly sensitive to this
specification.
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prices can exhibit nearly self-fulfilling ARCH effects and recurrent bubbles and
crashes that result from the real-time updating of risk. We choose the following
parameterization: β = .98, y0 = 1.5, s0 = 1, a = 0.75, σ2

ε = 0.95, σ2
ν = 0.45.5

Figure 1 plots the results of a 10,000 period simulation for a small constant
gain of γ = .0001. The top panel plots the stock price and the bottom panel plots
the real time risk estimates. The right panels are for the ARCH learning model,
while the left is the simple recursive algorithm. In a fundamentals REE stock
price follows an iid process. With random walk beliefs, stock price is strongly
serially correlated. Figure 1 demonstrates that with a small gain there is little
variation in real time risk estimates and stock prices do not exhibit bubbles or
crashes.

Figure 1: Stock price dynamics with a small gain (γ = .0001).
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Figure 2 presents the results from simulations with a larger gain γ = 0.03.
There is significant movement in the estimated risk with periods of declining risk

5These parameter values are chosen for illustrative purposes; a serious calibration would
require a more complicated model than the simple mean-variance framework employed here.
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estimates and other periods of elevated risk. Clearly, movements in risk lead to
bubbles and crashes in which stock price deviates significantly from its fundamen-
tals value. A decline in perceived risk leads to a bubble: as traders perceive lower
risk, their demand increases, leading to higher prices that persist because random
walk beliefs interpret these innovations as permanent price increases. Recurring
bubbles and crashes arise whether or not agents allow for ARCH effects in their
estimation of risk.

Figure 2: Stock price dynamics with gain γ = .03.
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Figure 2 also demonstrates that constant-gain learning about risk can generate
ARCH effects. In Figure 1, with γ = .0001, real-time risk estimates were near
their equilibrium value. In Figure 2, the estimated risk for the ARCH model (SE
corner) exhibit ARCH effects as σ2

t fluctuates between periods of high and low
volatility. Although perhaps not as noticeable for algorithm 1, it is possible to test
for ARCH effects by constructing the test statistic in Engle (1982). We found that
for γ = .0001 the test statistic fails to reject the null that squared excess returns
are iid, while for γ = .03 we do reject the null of no ARCH. Learning about risk
introduces ARCH effects and allowing for ARCH effects is partially self-fulfilling.
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Furthermore, when agents allow for ARCH effects in their estimates, this reinforces
the role played by risk in generating bubbles and crashes, as can be seen in the
top panels of Figure 2.

Figure 3 focuses on a bubble episode from a long simulation assuming ARCH
learning (3). The bottom panel also includes a plot of the real time least squares
ARCH coefficient estimates α0,t,α1,t. The RPE value computed earlier corre-
sponds to α1 = 0. Beginning at period 0 there is a sustained decrease in perceived
risk. Moreover, the estimates for α1,t attribute persistence to the decline in risk,
which leads to further declines in perceived risk, and translates into a bubble as
these price innovations feedback through the random walk beliefs of agents. This
figure clearly demonstrates how real time learning about risk can generate bubbles
in stock prices.

Figure 3: Bubble (ARCH learning) with gain γ = .03.
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5 Conclusion

This paper adopted a least-squares learning environment to generate recurrent
bubbles and crashes. The model consists of risk-averse traders each of whom
believe that stock prices follow a random walk. Random walk beliefs were shown
by Branch and Evans (2011) to be nearly self-confirming. Risk averse agents need
to also forecast the riskiness of stocks – measured as the conditional variance
of excess returns – and so they adopt an econometric forecasting model whose
parameters are updated with a form of discounted least squares (constant gain
learning). The results presented in this paper demonstrate that (1) there exists
a unique restricted perceptions equilibrium that is stable under learning, (2) that
when agents update their risk estimates in real time with constant gain least
squares, recurrent bubbles and crashes can arise, and (3) ARCH effects arise
endogenously from agents’ learning. These ARCH effects are detectable, and
when agents allow this in their algorithms, it strengthens the effect that risk has
in generating bubbles and crashes.

Appendix
Proof of Proposition 1.

Let zt = pt − pt−1 + εt. Let Xt = (1, z2t )
′. Then with exogenous share supply

we have
σ2
t = σ2

t−1 + t−1
(

z2t − σ2
t−1

)

for algorithm 1,

Define φ = σ2. Using standard techniques, e.g. Evans and Honkapohja (2001),
the differential equation governing local stability of the learning dynamics is

dφ

dτ
= h(φ)

where h(φ) = T (σ2)− σ2. Locally stable RPE are associated with the stable rest

points of this equation. It suffices to check DT (σ2
L) =

4(aβ)2σ2

L
σ2
ν

1+β
< 1, whereas

DT > 1 at the larger root for σ2.
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