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Abstract

This paper examines the problem of designing mechanisms with learning prop-
erties that help guide agents to play desired equilibrium strategies. I introduce the
concept of supermodular implementation where the mechanisms are constructed to
induce supermodular games, i.e games with strategic complementarities. These super-
modular mechanisms receive the valuable characteristics of supermodular games such as
their learning properties. A social choice function (scf) is supermodular implementable
if it is implementable with a supermodular mechanism. In quasilinear environments, I
prove that if a scf can be implemented by a mechanism that generates bounded strate-
gic substitutes - as opposed to strategic complementarities - then this mechanism can
be converted into a supermodular mechanism that implements the scf. If the scf also
satisfies some efficiency criterion, then I show that it is supermodular implementable
with budget-balancing transfers. Then I address the multiple equilibrium problem. I
provide general sufficient conditions for a scf to be implementable with a supermodular
mechanism whose equilibria are contained in the smallest interval among all supermod-
ular mechanisms. I also give conditions for supermodular implementability in unique
equilibrium. Finally, the paper deals with general preferences by providing a Super-
modular Revelation Principle.
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1 Introduction

The question of how an equilibrium outcome arises in a mechanism is largely open in
implementation theory and mechanism design. This literature has produced numerous
mechanisms that implement many social choice functions, but theoretical and experi-
mental works reveal that many mechanisms suffer from learning and stability issues.1

Often mechanisms do not enable boundedly rational agents to achieve an equilibrium
outcome by learning, if used repeatedly over time. Likewise, slight perturbations in
beliefs or behaviors often result in a departure from an equilibrium outcome, posing
stability problems. This is particularly troublesome, because the idea behind mecha-
nism design is usually practical in nature: Incentive design explicitly aims to construct
mechanisms that achieve some desirable outcome in equilibrium. In reality, a static
mechanism must sometimes be used repeatedly to reach an outcome. For example, the
traffic authorities may set up a toll-system which in the long-run will minimize con-
gestion and allocate users with higher benefits from driving to better roads (Sandholm
[50] and [51]). A manager may design the agents’ contracts to approach revenue maxi-
mization over time. A procurement department may allocate different jobs sequentially
to contractors by running an auction several times. A group of scientists may create
a control system for planetary exploration vehicles, so that the different units function
more efficiently as the mission progresses.2

In this paper, I develop the theory of supermodular Bayesian implementation to
improve learning and stability in mechanism design. Think of a mechanism as describing
the rules of a game: It assigns feasible strategies (or messages) to the agents and specifies
how these strategies map into enforceable outcomes. Since players have preferences over
the different outcomes, a mechanism induces a game in the traditional sense. If this
induced game is supermodular, then the mechanism is said to be supermodular. Then
I define a scf to be supermodular implementable if there is a supermodular mechanism
whose equilibrium strategies yield that scf as an outcome. Assuming strategies are
numbers, a supermodular game is a game with strategic complementarities, i.e a game in
which the marginal utility of an agent increases as other players increase their strategies.
The complementarities imply that an agent wants to play a larger strategy when the
others do the same. For instance, it becomes more desirable for a worker in a firm to
increase her effort when others put more effort into their job.

Supermodular implementation has interesting dynamic properties. Best-replies are
always increasing in supermodular games; this feature helps boundedly rational agents
find their way to equilibrium, for most learning dynamics inherit some monotonicity
that guides them “near” the equilibria. This theory thus contributes to fill the impor-
tant gap in the literature emphasized in Jackson [28]: “Issues such as how well various
mechanisms perform when players are not at equilibrium but learning or adjusting are
quite important [. . . ] and yet have not even been touched by implementation theory.

1Muench and Walker [44] , Cabrales [7] and Cabrales and Ponti [8] show that learning and stability
may be serious issues in (resp.) the Groves-Ledyard [23], Abreu-Matsushima [2] and Sjöström [52]
mechanisms. On the experimental side, Healy [24] and Chen and Tang [13] provide evidence that
convergence of learning dynamics may fail in various mechanisms, such as Proportional Tax or the
paired-difference mechanism.

2See issues related to cognitive intelligence (Parkes [47] and Tumer and Wolpert [56]).
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[This topic] has not been looked at from the perspective of designing mechanisms to
have nice learning or dynamic properties.” For example, a principal may actually attain
revenue maximization by offering the agents a contract that they will face repeatedly
for a sufficiently long time. A government may reach an optimal public goods level by
repeatedly applying a supermodular tax system.

Supermodular mechanisms are appealing because they receive the theoretical prop-
erties of supermodular games. Milgrom and Roberts [39] and Vives [58] show that
supermodular games have a largest and a smallest equilibrium and adaptive learners
end up playing profiles in between. Adaptive learners regard past play as the best
predictor of their opponents’ future play and best-respond to their forecast. Cournot
dynamics, fictitious play and Bayesian learning are examples of adaptive learning. This
convergence result extends to sophisticated learners, who react optimally to what their
opponents may next best-respond (Milgrom and Roberts [40]). If a supermodular game
has a unique equilibrium, then convergence to the equilibrium is ensured. Adaptive and
sophisticated learning encompasses such a wide range of backward and forward-looking
behaviors that supermodular mechanisms have very robust learning properties. Su-
permodular games are also attractive in an implementation framework because their
mixed strategy equilibria are locally unstable under monotone adaptive dynamics like
Cournot dynamics and fictitious play (Echenique and Edlin [20]). Ruling out mixed
strategy equilibria is common in implementation theory and often arbitrary; but it is
sensible in supermodular implementation. To the contrary, many pure-strategy equi-
libria are stable. In a parameterized supermodular game, all those equilibria that are
increasing in the parameter are stable, such as the extremal equilibria (Echenique [18]).

Supermodular games and mechanisms are supported by strong experimental evi-
dence. Healy [24] tests five public goods mechanisms in a repeated game setting and
observes convergence only in those mechanisms that induce a supermodular game. Ex-
periments on the Groves-Ledyard mechanism have shown that convergence is far better
when the punishment parameter is high than when it is low (Chen and Plott [12] and
Chen and Tang [13]). The Groves-Ledyard mechanism turns out to be supermodular
when the punishment parameter is high. Finally, Chen and Gazzale [15] presents ex-
periments on a game where a parameter determines the degree of complementarity. In
this game, they observe that convergence is significantly better when the parameter lies
in the range where the game is supermodular.

The methodology used in the paper to derive properties of a mechanism may be
promising for mechanism design theory. One striking feature of the traditional design
approach is how much it relies on solution concepts to reach certain objectives. For
example, if the designer wants the mechanism to be robust to misspecifications of
the prior, then she will likely choose implementation in dominant strategies or ex-
post equilibrium. Conversely, if the designer targets full efficiency in some quasilinear
environment, then she will prefer implementation in Bayesian equilibrium. Economists
have attempted to solve nearly all design problems by introducing a solution concept
into the implementation framework: Subgame-perfect equilibrium, undominated Nash
equilibrium, coalition-proof equilibrium, etc. However, there are interesting properties
for mechanisms that are attached to families of games rather than solution concepts.3

3Sandholm [50] and [51] successfully use implementation in potential games to obtain evolutionary
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So why focus on the solution concept? This paper proposes an alternative approach by
using a weak solution concept - Bayesian equilibrium - and by instead focusing on a
class of games with nice theoretical and experimental properties.

The centerpiece of my analysis is Theorem 1. In quasilinear environments with real
type spaces, I prove that if a scf can be implemented by a direct mechanism that gen-
erates bounded strategic substitutes - as opposed to strategic complementarities - then
this mechanism can be turned into a direct supermodular mechanism that implements
the scf. The condition of bounded substitutes is always satisfied on finite type spaces
and in twice-continuously differentiable environments with compact type spaces. So,
the result is fairly general. The transformation technique is constructive and simple,
yet powerful. I explain it in the next section in the context of a public goods example.
The transfers can be appended a piece that turns the agents’ announcements into com-
plements, and that vanishes in expectation when the opponents play truthfully; thus
truthtelling remains an equilibrium after the transformation. That piece is a coordi-
nation device that rewards the agent for conforming to the direction and amplitude of
her opponents’ report and that punishes her for not doing so.

In quasilinear environments, the mechanism designer is often interested in that there
be no transfers into or out of the system. This is known as the budget balance condi-
tion and it plays an important role in (full) efficiency. Achieving budget balancing is
difficult under dominant strategy implementation (Green and Laffont [22]) but possible
under Bayesian implementation (Arrow [5] and d’Aspremont and Gérard-Varet [16]).
Theorem 2 shows that budget balancing is also possible under supermodular Bayesian
implementation. If a scf contains an (allocation) efficient decision rule and admits a
mechanism producing bounded substitutes, then it is supermodular implementable with
balanced transfers. Interestingly, there are cases where dominant strategy implementa-
tion cannot balance the budget, whereas it is possible to balance the budget and induce
a supermodular game with a unique equilibrium.

Complementarities help guide agents towards the equilibrium, but they are source of
new equilibria with possibly bad outcomes on which agents may coordinate. Supermod-
ular implementation relies on weak implementation, i.e only the truthful equilibrium is
known to deliver the desired outcome. Yet the mechanisms here generate a largest and
a smallest equilibrium. There is a multiple equilibrium problem and I deal with it by
developing optimal and unique supermodular implementation. Optimal supermodular
implementation involves designing a supermodular mechanism that generates the weak-
est complementarities among all supermodular mechanisms. I prove that the interval
between the largest and the smallest equilibrium decreases with the complementarities,
hence optimal implementation produces the tightest interval around the truthful equi-
librium (Proposition 2). Since this interval is “small,” learning leads to a profile close to
truthtelling and to the desired outcome. The intuition is that agents should be rewarded
or punished to adopt monotone behaviors but no more than necessary, otherwise they
tend to overreact. The main result (Theorem 3) is that all twice-differentiable scf whose
decision rule depends on types through an aggregate are optimally supermodular im-
plementable. Unique supermodular implementation describes that situation where the
truthful equilibrium is the unique equilibrium of the induced supermodular game. All

properties of the mechanism.
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dynamics converge to the equilibrium. Theorem 4 gives conditions for unique supermod-
ular implementation. As a by-product, it implies coalition-proof Nash implementation
by Milgrom and Roberts [43].

The theory applies to traditional models of public goods or principal multi-agent
models. In a public goods example with quadratic preferences, suppose that a designer
uses the expected externality mechanism to implement some decision rule (Section
2). In the induced game, many learning dynamics fail to converge to the truthful
equilibrium. Nevertheless, the mechanism can be modified to induce a supermodular
game where the truthful equilibrium is unique and all dynamics converge to it. In a
team-production example, a principal contracts with a set of agents and monitors their
contribution to maximize net profits (Section 6.1). The scf is optimally implementable
and truthtelling is the unique equilibrium of the induced supermodular game. But
there are also challenging applications for the theory such as binary-choice models
of auctions and public goods. A possible way around this problem is approximate
implementation, where the objective becomes to supermodularly implement scf that
are arbitrarily close to a “target scf.” Most bounded scf admit nearby scf that are
supermodular implementable (Section 6.2). The results apply, for instance, to auctions,
public goods and bargaining (Myerson and Satterthwaite [46]).

Supermodular implementation is widely applicable in quasilinear environments even
though the paper limits attention to direct mechanisms. For general preferences, how-
ever, direct mechanisms may be restrictive. The Revelation Principle says that direct
mechanisms cause no loss of generality under traditional weak implementation. It is
particularly relevant to examine the revelation principle for supermodular implemen-
tation, because the space of mechanisms to consider is very large. The Supermodular
Revelation Principle (Theorem 5) says that if there exists a mechanism that super-
modularly implements a scf such that the range of the equilibrium strategies in the
desired equilibrium is a lattice, then there is a direct mechanism that supermodularly
implements that scf truthfully. I give an example of a supermodular implementable scf
where this range is not a lattice and that cannot be supermodularly implemented by
any direct mechanism. This suggests that the condition of the theorem is somewhat
minimally sufficient. Although this revelation principle is not as general as the tradi-
tional one, it measures the restriction imposed by supermodular direct mechanisms and
gives conditions for their use.

A number of other papers are related to learning and stability in the context of
implementation or mechanism design. Chen [14] deserves mention because it is one of
the first papers explicitly aimed at learning and stability in mechanism design. In a
complete information environment with quasilinear utilities, she constructs a mecha-
nism that Nash implements Lindahl allocations and induces a supermodular game. My
paper builds the framework of supermodular Bayesian implementation and generalizes
her result in incomplete information. Abreu and Matsushima [1] establishes that for
any scf f and positive ε, there is an ε-close scf fε that admits a mechanism where itera-
tive deletion of strictly dominated strategies leads to a unique profile whose outcome is
fε. Even though their result is general and strong,4 it can be questioned on the basis of

4The solution concept is strong enough to predict convergence of many learning dynamics to the
unique equilibrium outcome (See e.g [40]). Note that there are games where some adaptive dynamics
from [39] do not converge to a uniquely rationalizable profile.
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learning and stability. Following Cabrales [7], when the mechanism implements fε, it
actually implements it in iteratively strictly ε-undominated strategies. In other words,
elimination of weakly dominated strategies is the solution concept that underlies the
exact-implementation problem for f (Abreu and Matsushima [2]); virtual implemen-
tation is a way of turning it into elimination of strictly dominated strategies for fε.

5

Another criticism is that it does not seem to extend to infinite sets of types, which is re-
lated to important theoretical questions (Duggan [17]). Their mechanism also employs
a message space whose dimension increases to infinity as ε vanishes. In contrast, my pa-
per studies exact implementation with direct mechanisms on finite or infinite type sets.
Cabrales [7] and Cabrales and Serrano [9] demonstrate that there are learning dynam-
ics that converge to desired equilibrium outcomes in a general framework of (Bayesian)
Nash implementation. But those dynamics require players to strictly randomize over
all improvements on past play.6 This rules out many natural learning dynamics consid-
ered here. Finally, there are general impossibility results on the stability of equilibrium
outcomes in Nash implementation (Jordan [29] and Kim [30]).

The remainder of the paper is organized as follows. Section 2 presents the leading
public goods example. Section 3 gives the basic definitions of lattice theory and Section
4 lays out the framework of supermodular implementation. Section 5 contains the main
results. Section 6 provides several applications of the theory to traditional models and
introduces approximate supermodular implementation. Section 7 presents the super-
modular revelation principle. Finally, Section 8 gives an interpretation of learning in
Bayesian games and Section 9 concludes.

2 Motivation and Intuition

This section provides an economic example of a designer who uses the expected ex-
ternality mechanism (Arrow [5] and d’Aspremont and Gérard-Varet [16]) to implement
a scf. The environment is simple: Two agents with smooth utilities and compact real
type spaces. Yet the mechanism induces a game where learning and stability fail under
many dynamics.

Then I describe a new approach where the existing mechanism is modified in order
to induce a supermodular game. In the example, the benefit is immediate: All learning
dynamics converge to the truthful equilibrium, and the equilibrium is stable.

Consider a principal who needs to decide the level of a public good, such as the size
of a bridge. Let X = [0, 2] denote the possible values of the public good. There are
two agents, 1 and 2, whose type spaces are Θ1 = Θ2 ⊂ [0, 1]. Types are independently
uniformly distributed. The agents’ preferences are quasilinear, ui(x, θi) = Vi(x, θi) + ti,
where x ∈ X, θi ∈ Θi, and ti ∈ R is the transfer from the principal to agent i. The
valuation functions are V1(x, θ1) = θ1x− x2 and V2(x, θ2) = θ2x + x2/2.

5Elimination of strictly dominated strategies implies robust learning properties, but not for weakly
dominated strategies because it has the perverse consequence of excluding limit points of some learning
dynamics.

6This feature is crucial, for example, to allow play to exit an integer game after players have fallen
into it.
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The principal wishes to make an allocation-efficient decision, i.e she aims to max-
imize the sum of the valuation functions by choosing x∗(θ) = θ1 + θ2. To this end,
she wants the agent to reveal their true type, so she opts for the expected externality
mechanism.7 The transfers are set as follows:

t1(θ̂1, θ̂2) =
1

2
+

θ̂1

2
+ θ̂2

1 + θ̂2 +
θ̂2
2

2
, t2(θ̂1, θ̂2) = −t1(θ̂1, θ̂2)

Consider the straightforward application of learning to the (ex-ante) Bayesian game
induced by this mechanism (See Section 8).8 I will study convergence and stability
of learning dynamics. Time proceeds in discrete periods t ∈ {0, 1, . . .} and agents are
assumed to learn as time passes according to some rule. The strategies at time 0 are
given exogenously. The agents observe the history of play from 0 to t − 1 and then
publicly play a strategy at t. More precisely, from the strategies played in the past, each
agent updates her beliefs about her opponent’s future strategy using some specified rule;
then, given those updated beliefs, she plays the strategy which maximizes her current
expected payoffs in the mechanism. In this context, a strategy is a deception, which is
a contingent plan that specifies a type to be announced for each of an agent’s possible
types, and that she commits to follow after learning her type. Formally, a deception
for i at period t is a function θ̂t

i : Θi → Θi.
9

The questions are: Will the profile played at t converge to the truthful equilibrium as
t →∞? If players were in the truthful equilibrium, will they return to this equilibrium
after an exogenous perturbation? The first question asks whether the agents ever learn
to play truthfully. The second one asks whether truthtelling is a stable equilibrium.

The players’ payoffs determine the answers. For i = 1, 2, define the set of deceptions
Σi as the set of measurable functions from Θi into Θi, and let P(Σi) be the set of
(Borel) probability measures over Σi. Let µt

i ∈ P (Σj) be player i’s beliefs about player
j’s deceptions at time t. A learning model is defined by a rule that takes the history of
play as input and that generates beliefs µt

i as output.
Letting cplt(i) = 2(−1)i/i, player i’s expected utility in the mechanism is

E[ui|µt
i] = − θ̂2

i

2
+

(
θi + cplt(i)E

[
Eθj

[θ̂t
j(θj)] |µt

i

]− (−1)i/i
)
θ̂i (1)

up to a constant, where E[.|µt
i] is i’s expectation over Σj (j’s deceptions) given her

beliefs µt
i.

In (1), cplt determines how players’ strategies depend on one another. Since cplt(1) <
0 and cplt(2) > 0, if player 1 believes player 2’s strategy has increased on average, then
1 decreases her strategy and vice-versa; whereas 2 tries to match any average-variation
in 1’s strategy. Players essentially chase one another, and so this game has a flavor of
“matching-pennies” that will be the source of instability and learning deficiency.

7This mechanism allows truthful implementation of allocation-efficient decision rules (See [5], [16]
or Section 23.D in Mas-Colell et al. [36]) i.e truthtelling is a Bayesian equilibrium of the mechanism.

8See Chapter 1 of Fudenberg and Levine [21] for a justification and discussion of myopic learning.
9Announcing a deception in the Bayesian game might seem more realistic when type sets are finite

(the example has similar conclusions in the finite case), but here it will come down to choosing an
intercept between -1 and 1.
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Learning often fails to occur in this example. There are many learning dynamics
for which, not only do the agents not converge to truth-revealing but the play cycles
forever. Consider first weighted fictitious play (See e.g Ho [25]) in the case where,
for simplicity, types are in {0, .5, 1}. So Σi is finite. Deceptions are initially assigned
arbitrary weights and the beliefs are given by the frequencies of the different deceptions
in the total weight. Given 0 < π < 1, beliefs are updated each period by multiplying all
weights by 1−π and by adding one to the weight of the opponent’s deception played at
the last period. If players use an identical rule π, the profile converges to the truthful
equilibrium unless π is too high (π > .8), in which case cycling occurs. But there is no
reason a priori for both players to use the same learning rule. For asymmetric rules,
learning becomes more uncertain. The player with the highest π often outweighs the
other one in a non-linear fashion and prevents learning.10

Consider now the model with continuous types in [0, 1]. A dynamics is said to be
Cournot if each player believes that her opponents will play at t what they played at
t − 1. In the example, Cournot dynamics cycles and this conclusion holds wherever
the dynamics starts (except truthtelling). Besides, if the agents were to play the truth-
ful equilibrium, the slightest belief perturbation would destabilize it under Cournot
adjustment.

Cournot dynamics is prone to cycling, because the past only matters through the last
period. But cycling prevails for many families of dynamics with a larger memory size,
where for example players remember the last T periods and believe that a probability
distribution over their opponents’ past strategies best describe their future behavior.11

Learning also fails for other forms of learning dynamics than adaptive dynamics,
such as the sophisticated learning dynamics à la Milgrom-Roberts [40].

Although strategic complementarities are not necessary for convergence, their ab-
sence clearly causes the learning failures in the example.

The theory I develop suggests to transform an existing mechanism into one which
induces a supermodular game. The main insight is to use transfers to create comple-
mentarities between agents’ announcements. The general transformation technique is
simple and efficient. After transforming the mechanism, all adaptive and sophisticated
dynamics converge to the truthful equilibrium, and the equilibrium is stable.

Consider the above two-agent environment and recall that truthtelling is a Bayesian
equilibrium in the expected externality mechanism. Now player 1 could be subsidized
if she accepts to change the value of the public good as 2 wishes, and taxed otherwise.
From 1’s point of view, 2 prefers large values of the public good when 2 reports large
types on average, i.e Eθ2 [θ̂2(.)] ≥ Eθ2 [θ2]. If 2 prefers small values, then the inequality

10If 1 learned according to a fictitious play rule with π1 while 2 used π2, then the sequence would
enter a cycle for many values of π1 ≥ .9, π2 ≥ .55

11Consider dynamics where players remember the last T periods. They assign a probability π to the
deception played at t− 1 and (1− π)δk/C to that played at t− k where C is normalized so that the
probabilities add up to one. Simulations reveal that learning fails under many values of the parameters.
Let (θ̂0

1(.), θ̂
0
2(.)) be the pair of zero-functions. For T ∈ {2, 3}, δ = .9 and π ≥ .5, the process enters a

cycle even though the last few periods are weighted almost equally. This suggests that increasing the
memory size may improve learning. For T = 4, δ = .8 and π ≤ .65, the profile converges to the truthful
equilibrium, but it cycles for π ≥ .7. But a larger memory does not necessarily improve learning, as
cycling reappears when T = {5, 6}, δ = .8 for values of π below .65.
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is reversed. The new tax system could subsidize 1 if 1 reports large types when 2
does so, and tax 1 if 1 still reports large types when 2 does not. Possible transfers
tSM
1 (.) accomplishing this task are constructed by appending ρ1θ̂1(θ̂2 − Eθ2 [θ2]) to the

current transfers, where ρ1 is an arbitrary parameter capturing the punishment or
reward intensity:

tSM
1 (θ̂) = Eθ2 [t1(θ̂1, θ2)] + ρ1θ̂1(θ̂2 − Eθ2 [θ2])

Agent 2’s transfers are modified similarly with parameter ρ2. The intuition is that
there should be ρ1 large enough such that, regardless of 1’s original incentives, the
reward (punishment) for (not) following 2 now is so high that 1 becomes willing to follow
2 along any learning dynamics. But by doing so, we actually created a supermodular
mechanism. Note ∂2tSM

1 (θ̂)/∂θ̂1∂θ̂2 = ρ1. Thus, if ∂2V1(x1(θ̂), θ1)/∂θ̂1∂θ̂2 is bounded
below, a condition called bounded substitutes,12 then there is ρ1 large enough such that

∂2V1(x1(θ̂1, θ̂2), θ1)

∂θ̂1∂θ̂2

+
∂2tSM

1 (θ̂1, θ̂2)

∂θ̂1∂θ̂2

≥ 0, for all θ̂, θ1. (2)

A similar equation holds for agent 2, which implies that the Bayesian game induced
by the mechanism is supermodular.13 Further, tSM

1 and t1 have the same expectation
when the opponents play truthfully: Eθ2 [t

SM
1 (., θ2)] = Eθ2 [t1(., θ2)]. Thus if 1’s best-

reply under t1 was to tell the truth when 2 played truthfully, then it must be the case
under tSM

1 . So truthtelling is an equilibrium after modifying the transfers.
In addition to its intuitive appeal, this technique can be powerful. Theorem 4 of

Section 5.3 implies that there are values ρ1 and ρ2 for which truthtelling is the unique
equilibrium of the supermodular mechanism in this example. All adaptive dynamics
now converge to the truthful equilibrium, and the equilibrium is stable.

3 Lattice-theoretic Definitions and Supermodular

Games

The basic definitions of lattice theory in this section are discussed in Milgrom-
Roberts [39] and Topkis [54].

A set M with a transitive, reflexive, antisymmetric binary relation º is a lattice if
for any x, y ∈ M , x ∨ y ≡ supM{x, y} and x ∧ y ≡ infM{x, y} exist. It is complete if
for every non-empty subset A of M , infM A and supM A exist. A nonempty subset A
of M is a sublattice if for all x, y ∈ A, x ∨ y, x ∧ y ∈ A. A closed interval [x, y] in M is
the set of m ∈ M such that y º m º x. The order-interval topology on a lattice is the
topology whose subbasis for the closed sets is the set of closed intervals. All lattices
in the paper are endowed with their order-interval topology. In Euclidean spaces the
order-interval topology coincides with the usual topology.

Let T be a partially ordered set; g : M → R is supermodular if, for all m,m′ ∈ M ,
g(m) + g(m′) ≤ g(m ∧ m′) + g(m ∨ m′); g : M × T → R has increasing (decreasing)

12This condition is satisfied in the present public goods example.
13If the complete information payoffs define a supermodular game for each θ ∈ Θ, then the (ex-ante)

Bayesian game is supermodular. Loosely speaking, supermodular games are characterized by utility
functions whose cross-partial derivatives are positive.
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differences in (m, t) if, whenever m º m′ and t º t′, g(m, t)− g(m′, t) ≥ (≤)g(m, t′)−
g(m′, t′); g : M × T → R satisfies the single-crossing property in (m, t) if, whenever
m º m′ and t º t′, g(m′′, t′) ≥ g(m′, t′) implies g(m′′, t′′) ≥ g(m′, t′′) and g(m′′, t′) >
g(m′, t′) implies g(m′′, t′′) > g(m′, t′′). If g has decreasing differences in (m, t), then
variables m and t are said to be substitutes. If g has increasing differences or satisfies
the single-crossing property in (m, t), then m and t are said to be complements.

A game is described by a tuple (N, {(Mi,ºi)}, u), where N is a finite set of players;
each i ∈ N has a strategy space Mi with an order ºi and a payoff function ui :∏

i∈N Mi → R; and u = (ui).

Definition 1 A game G = (N, {(Mi,ºi)}, u) is supermodular if for all i ∈ N ,

1. (Mi,ºi) is a complete lattice;

2. ui is bounded, supermodular in mi for each m−i and has increasing differences in
(mi, m−i);

3. ui is upper-semicontinuous in mi for each m−i, and continuous in m−i for each mi.

4 Supermodular Implementation: The Framework

Let N = {1, . . . n} denote a collection of agents. A planner faces a measurable set
Y of alternatives with generic element y ∈ Y . For each agent i ∈ N , let Θi be the
measurable space of i’s possible types. Let Θ−i =

∏
j 6=i Θj. Agents have a common

prior φ on Θ known to the planner. The planner’s desired outcomes are represented by
a measurable social choice function f : Θ → Y .

A mechanism is a tuple Γ = ({(Mi,ºi)}, g) where each agent i’s message space Mi

is endowed with an order ºi and is a measurable space; g : M → Y is a measurable
outcome function. A strategy for agent i is a measurable function mi : Θi → Mi. Denote
by Σi(Mi) the set of equivalence classes of measurable functions from (Θi,Fi) to Mi.
This set is endowed with the pointwise order, also denoted ºi. A direct mechanism is
one for which each Mi = Θi and g = f . In this case, Σi(Θi) is called the set of i’s
deceptions and its elements are denoted θ̂i(.). Direct mechanisms vary by the order on
type spaces.

Each agent i’s preferences over alternatives are given by a measurable utility function
ui : Y × Θi → R. These utility functions are uniformly bounded by some u. For
m−i ∈

∏
j 6=i Mj, agent i’s preferences over messages in Mi are given by her ex-post

payoffs ui(g(mi,m−i), θi). Agent i’s ex-ante payoffs are defined as ug
i (mi(.),m−i(.)) =

Eθ[ui(g(mi(θi),m−i(θ−i), θi)] for any profile m(.), where Eθ[.] is the expectation with
respect to φ.

There are three stages at which it is relevant to formulate the game induced by
mechanism Γ: Ex-ante, interim and ex-post (complete information). The paper mostly
adopts an ex-ante perspective, as the objective is that the ex-ante induced game G =
(N, {(Σi(Mi),ºi)}, ug) be supermodular (See Section 8). However, if message sets are
compact sublattices of some Euclidean space, then a sufficient condition for G to be
supermodular is that the complete information game induced by Γ be supermodular
for every profile of true types. This explains the next definitions. If a scf is Bayesian
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implementable with a mechanism that always induces an ex-post supermodular game,
then it is supermodular implementable.

Definition 2 The mechanism Γ supermodularly implements the scf f(.) if there exists
a Bayesian equilibrium m∗(.) such that g(m∗(θ)) = f(θ) for all θ ∈ Θ, and if the induced
game G(θ) = (N, {(Mi,ºi)}, u(g(.), θ)) is supermodular for all θ ∈ Θ. The scf f is said
to be supermodular implementable.14

Definition 3 A scf is truthfully supermodular implementable if there exists a direct
mechanism that supermodularly implements the scf f(.) such that θ̂(θ) = θ for all θ ∈ Θ
is a Bayesian equilibrium.

Since the paper is mostly concerned with direct Bayesian mechanisms, I often omit
the qualifications of “truthful,” “truthfully” and “Bayesian.”

5 Supermodular Implementation on Quasilinear Do-

mains

This section deals with supermodular implementation when agents have quasilin-
ear utility functions. The objective is to give general conditions under which a scf is
supermodular implementable and the mechanism satisfies some further requirements.
There are four main results. The first provides general conditions for supermodular
implementability. The second answers the question of supermodular implementation
and budget balancing. The third gives sufficient conditions for a scf to be supermodular
implementable with a game whose interval between extremal equilibria is the smallest
possible. The fourth offers sufficient conditions for supermodular implementability in
unique equilibrium.

5.1 Environment and Definitions

An alternative y is a vector (x, t1, . . . , tn) where x is an element of a compact set
X ⊂ Rm and ti ∈ R for all i. Each agent i has a type space Θi ⊂ R (finite or infinite).
Endow Θi with the usual order. Notice that Σi(Θi) is a complete lattice with the
pointwise order.15

Let Xi be a compact subset of Rmi such that Xi = X or
∏

i∈N Xi = X. For all
i ∈ N , preferences are quasilinear with utility function ui(x, θi) = Vi(xi, θi) + ti where
xi ∈ Xi. The function Vi : Xi ×Θi → R is called i’s valuation function and the vector
of those valuations is denoted V .

In this environment, a scf f = (x, t) is composed of a decision rule x : Θ 7→ (xi(θ))
where xi : Θ → Xi, and transfer functions ti : Θ → R.

14Definitions 2 and 3 are also simplifying definitions. It is sufficient but not necessary that G(θ) be
supermodular for each θ in order for the ex-ante Bayesian game to be supermodular. For example, if
the prior is mostly concentrated on some subset Θ′ of Θ, it may not be necessary to make the ex-post
payoffs supermodular for types in Θ\Θ′. Of course, the possibility of neglecting Θ\Θ′ depends on how
unlikely that set is compared to how submodular the utility function may be for types in that set.

15See Lemma 1 in Van Zandt [57].
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Say that the valuation functions and the decision rule are twice-continuously differ-
entiable if for all i, there exist open sets Oi ⊃ Θi and Ui ⊃ Xi, such that Vi : Ui×Oi → R
and xi :

∏
i∈N Oi → Ui are twice-continuously differentiable.

The valuation functions and the decision rule form a continuous family if for all i,
Vi is bounded, Vi(xi(θ̂), θi) is continuous in θ̂−i for fixed θ̂i and θi, and Vi(xi(θ̂), θi) is
upper-semicontinuous in θ̂i for fixed θ̂−i and θi.

Agents’ types are assumed to be independently distributed. For all i, the distribution
of i’s types admits a bounded density with full support.

Here a scf f is (truthfully) supermodular implementable if truthtelling is a Bayesian
equilibrium of the supermodular game induced by the direct mechanism.

The next definitions describe conditions on the composition of the valuation func-
tions and the decision rule.

For any θ′i, θ
′′
i ∈ Θi, let ∆Vi((θ

′′
i , θ

′
i), θ̂−i, θi) = Vi(xi(θ

′′
i , θ̂−i), θi)− Vi(xi(θ

′
i, θ̂−i), θi).

Say that the valuation functions and the decision rule (V, x) produce bounded sub-
stitutes, if for all i ∈ N , there is Ti ∈ R such that, for all θ′′i ≥ θ′i and θ′′−i ≥ θ′−i,
∆Vi((θ

′′
i , θ

′
i), θ

′′
−i, θi) − ∆Vi((θ

′′
i , θ

′
i), θ

′
−i, θi) ≥ Ti(θ

′′
i − θ′i)

∑
j 6=i(θ

′′
j − θ′j) for all θi ∈ Θi.

Equivalently, substitutes are said to be bounded by Ti. The condition requires the dif-
ference quotient of any player’s marginal valuation to be uniformly bounded below.16 In
twice-differentiable environments, this is equivalent to the existence of a uniform lower
bound on the cross-partial derivatives. In other words, if agents’ announcements are
strategic substitutes in the game with no transfers,17 so ∂2Vi(xi(θ̂), θi)/∂θ̂i∂θ̂j < 0, then
at least there is a bound on the negative magnitude of these cross-partial derivatives.
Notice that this assumption is always satisfied when type sets are finite. Moreover,
it is also satisfied whenever the decision rule and the valuation functions are twice-
continuously differentiable functions on compact type sets.

Say that the composition of the valuation functions and the decision rule is ω-
Lipschitz if for each i ∈ N , there exists ωi > 0 such that for all θ̂−i and θi, ∆Vi((θ

′′
i , θ

′
i),

θ̂−i, θi) ≤ ωi(θ
′′
i − θ′i), for all θ′′i ≥ θ′i. The same definition applies to transfer functions.

In differentiable environments, it simply means that the corresponding first-derivatives
are uniformly bounded above.

Say that the composition of the valuation functions and the decision rule has γ-
increasing differences if for each i ∈ N , there is γi > 0 such that for all θ̂′′i ≥ θ̂′i and
θ′′i ≥ θ′i, Eθ−i

[∆Vi((θ̂
′′
i , θ̂

′
i), θ−i, θ

′′
i )] − Eθ−i

[∆Vi((θ̂
′′
i , θ̂

′
i), θ−i, θ

′
i)] ≥ γi(θ̂

′′
i − θ̂′i)(θ

′′
i − θ′i).

This condition requires the expected marginal valuation to be sufficiently increasing in
a player’s true type.

Note that the conditions of bounded substitutes, ω-Lipschitz and γ-increasing dif-
ferences are simple bounds on derivatives, generalized to hold in non-differentiable
environments.

5.2 General Result and Implementation with Budget Balance

This subsection contains two main results. According to the first theorem, if the scf
and the utility functions are relatively well-behaved, in the sense of continuous families

16Recall Section 2.
17See Section 3
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and bounded substitutes, then a decision rule is implementable with transfers if and
only if it is supermodular implementable with transfers. The second theorem provides
sufficient conditions to satisfy budget balancing.

Theorem 1 Let decision rule x(.) and the valuation functions form a continuous fam-
ily with bounded substitutes. There exist transfers t such that f = (x, t) is implementable
and Eθ−i

[ti(., θ−i)] is upper-semicontinuous (usc), if and only if, there are transfers tSM

such that (x, tSM) is supermodular implementable and Eθ−i
[tSM

i (., θ−i)] is usc. Moreover,
transfers ti and tSM

i have the same expected value at the truthful equilibrium.

Proof: Sufficiency is immediate. So suppose that f = (x, t) is Bayesian implementable
and transfers t are such that Eθ−i

[ti(., θ−i)] is usc for all i. Then,

Eθ−i
[Vi(xi(θi, θ−i), θi)] + Eθ−i

[ti(θi, θ−i)] ≥ Eθ−i
[Vi(xi(θ̂i, θ−i), θi)] + Eθ−i

[ti(θ̂i, θ−i)] (3)

for all θ̂i. For ρi ∈ R, let
δi(θ̂i, θ̂−i) =

∑

j 6=i

ρiθ̂iθ̂j, (4)

and define

tSM
i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i) + Eθ−i

[ti(θ̂i, θ−i)]− Eθ−i
[δi(θ̂i, θ−i)]. (5)

Note that transfers ti and tSM
i have the same expected value: Eθ−i

[tSM
i (., θ−i)] =

Eθ−i
[ti(., θ−i)]. Thus (x, tSM) is Bayesian implementable by (3). Moreover, δi : Θ → R

is continuous and bounded. So it follows from the Bounded Convergence Theorem that
Eθ[δi(θ̂i(θi), θ̂−i (θ−i)) − Eθ−i

[δi(θ̂i(θi), θ−i)]] is continuous in θ̂(.). Since transfers t are

such that Eθ−i
[ti(., θ−i)] is usc, Fatou’s Lemma implies that Eθ[t

SM
i (θ̂i(θi), θ̂−i(θ−i))] is

usc in θ̂i(.) for each θ̂−i(.). Therefore, payoffs uf
i satisfy the continuity requirements for

supermodular games. Next I show that it is possible to choose ρi so that uf
i has increas-

ing differences in (θ̂i(.), θ̂−i(.)). By bounded substitutes, there exists Ti such that, for all
θ′′i ≥ θ′i and θ′′−i ≥ θ′−i, ∆Vi((θ

′′
i , θ

′
i), θ

′′
−i, θi)−∆Vi((θ

′′
i , θ

′
i), θ

′
−i, θi) ≥ Ti(θ

′′
i −θ′i)

∑
(θ′′j −θ′j)

for all θi ∈ Θi. Set ρi > −Ti. Choose any θ′′i ≥i θ′i and θ′′−i ≥−i θ′−i. The func-

tion ui(xi(θ̂i, θ̂−i), θi) has increasing differences in (θ̂i, θ̂−i) for each θi, if the following
expression is positive for all θi,

∆Vi((θ
′′
i , θ

′
i), θ

′′
−i, θi)−∆Vi((θ

′′
i , θ

′
i), θ

′
−i, θi) +

∑

j 6=i

ρi

(
θ′′i θ

′′
j + θ′iθ

′
j − θ′′i θ

′
j − θ′iθ

′′
j

)
. (6)

Given ρi > −Ti, (6) is greater than

∆Vi((θ
′′
i , θ

′
i), θ

′′
−i, θi)−∆Vi((θ

′′
i , θ

′
i), θ

′
−i, θi)− Ti

∑

j 6=i

(θ′′i − θ′i)(θ
′′
j − θ′j). (7)

Bounded substitutes immediately imply that (7) is positive for all θi, hence so is (6).
By Lemma 1, the utility function uf

i has increasing differences in (θ̂i(.), θ̂−i(.)). Finally,

since Θi is a chain, Lemma 1 implies uf
i is supermodular in θ̂i(.). Q.E.D

Theorem 1 shows that the class of implementable scf that can be supermodularly
implemented in Bayesian equilibrium is large, as there are only mild boundedness and
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continuity conditions on the utility functions and the scf. The transfers are at the heart
of the result: It is always possible to add complementarities into the transfers without
affecting the incentives that appear in the expected value.

Remark. Since players receive the same expected utility in equilibrium from (x, t)
and (x, tSM), if (x, t) satisfies some ex-ante or interim participation constraints, then
so does (x, tSM).

Recall that, if type spaces are finite or if the valuations and the decision rule are
twice-continuously differentiable on compact type sets, then the assumptions of bounded
substitutes and continuity are satisfied. This leads to the following important corollaries
which cover many cases of interest.

Corollary 1 Let type spaces Θi be finite subsets of R. For any valuation functions,
if the scf f = (x, t) is implementable, then there exist transfers tSM such that (x, tSM)
is supermodular implementable.

Corollary 2 Let type spaces Θi be compact subsets of R and let f = (x, t) be an
implementable scf such that Eθ−i

[ti(., θ−i)] is usc. If the decision rule and the valuation
functions are twice-continuously differentiable, then there exist transfers tSM such that
(x, tSM) is supermodular implementable.

The previous results state conditions that apply to Bayesian implementable scf. In
some instances it may not be obvious whether the decision rule admits implementing
transfers whose expected value is usc. Standard implementation results in differentiable
environments demonstrate that the expected value of the transfers in an implementable
scf takes an explicit form.18 This leads to the next proposition.

Proposition 1 Let Θi = [θi, θi] for i ∈ N . If decision rule x(.) and the valuation func-
tions form a continuous family with bounded substitutes such that Eθ−i

[Vi(xi(θ̂i, θ−i), θi)]

is continuous in (θ̂i, θi) and ∂Eθ−i
[Vi(xi(θ̂i, θ−i), θi)]/∂θi is increasing in θ̂i, then there

are transfers tSM such that (x, tSM) is supermodular implementable.

To identify supermodular implementable decision rules, Proposition 1 suggests to
choose those rules that lead each agent i’s expected marginal valuation to be nondecreas-
ing. By Theorem 1 and Proposition 7 in Appendix B, any such rule is supermodular
implementable with transfers tSM , combining (5) and (13).

The rest of this section investigates supermodular implementation under the budget
balance condition. In some design problems, the planner should not realize a net gain
from the mechanism. While the planner cannot sustain deficits, full efficiency requires
there be no waste of numéraire. A scf is fully efficient if it maximizes the sum of the
utility functions (not only the valuation functions) subject to the feasibility constraint∑

ti ≤ 0. So the transfers must add up to zero for each vector of true types. However,
complementarities between agents’ announcements may be irreconcilable with budget
balancing, as shown in the next example.

18See e.g Proposition 23.D.2 in Mas Colell et al. [36] for linear utility functions.
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Example 1 Consider the public goods example of Section 2. In this example, if there
exist transfers {tSM

i (.)}i=1,2 such that the resulting scf (x, tSM) is supermodular im-
plementable, then inequality (2) must hold for both agents. That is, the cross-partial
derivatives of t1(θ̂) must be greater than 2 and the cross-partial derivatives of t2(θ̂)
must be greater than -1; hence their sum will be strictly greater than 0. The budget
balance condition requires

∑
i=1,2 ti(θ̂) = 0, so the sum of the cross-partial derivatives

of the transfers must be null. As a result, budget balancing must be violated in this
example if there is supermodular implementation.

This example points to the difficulty of balancing budget in some situations with two
players. The next theorem provides sufficient conditions for a scf to be supermodular
implementable using balanced transfers. Say that a decision rule x is allocation-efficient,
if x(θ) ∈ argmaxx∈X

∑
i∈N Vi(xi, θi) for all θ ∈ Θ. Basically, if substitutes are bounded,

any allocation-efficient decision rule can be paired with a transfer scheme to give a
fully-efficient supermodular-implementable scf.

Theorem 2 Let n ≥ 3. Consider an allocation-efficient decision rule x(.). If the valu-
ation functions and the decision rule form a continuous family with bounded substitutes,
then there exist balanced transfers tBB such that (x, tBB) is supermodular implementable.

The proof appears in Appendix B and it is constructive. Transfers tBB correspond
to a transformation of the transfers in the expected externality mechanism, and they
rely on two observations. First, any player’s transfer in the expected externality mech-
anism displays no complementarities or substitutes, because transfers are separable in
announcements. Second, there is a transformation of these transfers similar to that
in Theorem 1 that enables to add complementarities while preserving incentives and
budget balancing. The key observation is that the transfers from Theorem 1 add com-
plementarity between agents’ announcements in a pairwise fashion. As soon as there
is a third agent, it is possible to subtract from each individual’s transfer those comple-
mentarities that come from the other agents’ transfers and that do not concern that
individual, thus balancing the whole system.

Theorem 2 can be modified to apply to situations where, for every realization of
types, enough taxes need to be raised to pay the cost of x. This constraint takes the
form

∑
i∈N ti(θ) ≥ C(x(θ)) for all θ, where C is the cost function mapping X into R+.19

5.3 Optimal and Unique Supermodular Implementation

This subsection deals with the multiple equilibrium problem in supermodular im-
plementation. Even if a mechanism has an equilibrium outcome with some desirable
property, it may have other equilibrium outcomes that are undesirable. The concept of
supermodular implementation relies on weak implementation: For direct mechanisms,
only the truthful equilibrium is known to have the desired outcome. It follows from

19An additional sufficient condition to apply the theorem is that C(.) and x(.) produce bounded
substitutes. See e.g Lemma 2 in Ledyard and Palfrey [33] for transfers satisfying this budget balance
condition. Note that these transfers are separable in types except (possibly) for C(x(θ)), so there are
no complementarities or substitutes beyond those contained in C(x(θ)).
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[39] that adaptive dynamics lead to play between the greatest and the least equilib-
rium, so players may learn to play an untruthful equilibrium associated with a bad
outcome. Therefore, it is important to minimize the size of the interval between the
extremal equilibria, called the interval prediction, and to take the number of equilibria
into consideration. If the interval prediction is small, then learning leads to a pro-
file close to truthtelling and to the desired outcome. For these reasons, supermodular
implementation is particularly powerful when truth-revealing is the unique equilibrium.

5.3.1 Optimal Implementation

I begin with an example that explains the foundations of this section.

Example 2 Consider the public goods example of Section 2. Suppose that transfers
are defined as ti(θ̂) = ρiθ̂iθ̂j + Eθj

[ti(θ̂i, θj)]− ρiθ̂iEθj
[θj] for i = 1, 2 and j 6= i, where ti

is given by the expected externality mechanism. If ρ1 = 21
2

and ρ2 = −1/2, the game
induced by the mechanism is supermodular and truthtelling is the unique Bayesian
equilibrium (See Example 3). For ρ1 = 31

5
and ρ2 = 1/2, the supermodular game

induced by the mechanism has now a smallest and a largest equilibrium. In the smallest
equilibrium, agent 1 announces 0 for any type below c1 ≈ 0.47 and θ1 − c1 for types
above, and agent 2 announces 0 for any type below c2 ≈ 0.55 and θ2 − c2 for types
above. In the largest equilibrium, agent 1 announces θ1 + c1 for any type below 1− c1

and 1 for types above, and agent 2 announces θ2 +c2 for any type below 1−c2 and 1 for
types above. Moreover, increasing ρ1 to 4 and ρ2 to 1 produces extremal equilibria with
c1 = c2 = 1 and c1 = c2 = 0; the smallest equilibrium is the smallest profile of the entire
space where each agent always announces her smallest type, and the largest equilibrium
is the largest profile of the entire space where each agent always announces her largest
type. Increasing ρ1 and ρ2 has had three negative consequences: i) By increasing these
parameters above (resp.) 5/2 and -1/2, we have generated two new equilibria. By
increasing them more, ii) we have enlarged the size of the interval prediction to be
the whole space, so the Milgrom-Roberts theorem is of little help now iii) the truthful
equilibrium has become locally unstable.

Before presenting the formal definitions and the results, I discuss some new concepts.
Think of the degree of complementarity between the variables of a function as given by
its cross-partial derivatives. Large cross-partials mean that the degree of complementar-
ity is high, and vice-versa. In Example 2, the transfers produce more complementarities
as ρi increases. Optimal supermodular implementation involves designing a mechanism
whose induced supermodular game has the weakest complementarities among super-
modular mechanisms. The rationale behind optimal supermodular implementation is
clear from Example 2. First, it is the best compromise between learning, stability and
multiplicity of equilibria. Adding complementarities improves learning and stability,
but too much complementarity may yield untruthful equilibria. Second, optimal super-
modular implementation provides the tightest interval prediction around the truthful
equilibrium (Proposition 2). This is hinted at by Example 2, because the extremal
equilibria move apart as the degree of complementarity increases.

Next I define those concepts formally and I prove the claim that relates the size of
interval prediction to the degree of complementarity. As mentioned above, the cross-
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partial derivatives offer a way of measuring complementarities in twice-differentiable
environments. It is natural to say that a transfer function t̃ generates larger comple-
mentarities than t, denoted t̃ ºID t, if ∂2t̃i(θ̂)/∂θ̂i∂θ̂j ≥ ∂2ti(θ̂)/∂θ̂i∂θ̂j for all θ̂, j and i.
The next definition formalizes this idea and extends it to non-differentiable transfers.

Definition 4 Define the ordering relation ºID on the space of transfer functions such
that t̃ ºID t if, for all i ∈ N and for all θ′′i > θ′i and θ′′−i >−i θ′−i, t̃i(θ

′′
i , θ

′′
−i)− t̃i(θ

′′
i , θ

′
−i)−

t̃i(θ
′
i, θ

′′
−i) + t̃i(θ

′
i, θ

′
−i) ≥ ti(θ

′′
i , θ

′′
−i)− ti(θ

′′
i , θ

′
−i)− ti(θ

′
i, θ

′′
−i) + ti(θ

′
i, θ

′
−i).

For twice-differentiable transfers, this definition is equivalent to the condition that
the cross-partial derivatives of each t̃i are larger than those of ti.

While ºID is transitive and reflexive on the space of transfer functions, it is not
antisymmetric. Consider the set of ºID-equivalence classes of transfers, denoted T .20

The next proposition shows that if a transfer function generates more complemen-
tarities than another transfer function, then it induces a game whose interval prediction
is larger than the interval prediction of the game induced by the other transfer. This
result is also interesting for the theory of supermodular games, as it relates the degree
of complementarity to the size of the interval prediction.21

For any t ∈ T and supermodular implementable f = (x, t), let θt(.) and θt(.) denote
the extremal equilibria of the induced game.

Proposition 2 Let decision rule x(.) and the valuation functions be such that Eθ−i
[Vi

(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi). For any supermodular implementable scf (x, t′′)
and (x, t′) with t′′, t′ ∈ T , if t′′ ºID t′, then [θt′(.), θt′(.)] ⊂ [θt′′(.), θt′′(.)].

This proposition provides the foundation for the next definition. If a scf is super-
modular implementable and its transfers generate the weakest complementarities, then
it is optimally supermodular implementable. This gives the tightest interval prediction
around the truthful equilibrium.

Definition 5 A scf f = (x, t∗) is optimally supermodular implementable if it is su-
permodular implementable and t ºID t∗ for all transfers t ∈ T such that (x, t) is super-
modular implementable.

The next result determines which decision rules are optimally supermodular imple-
mentable. The result uses the following property of decision rules. Say that a decision
rule x : Θ 7→ (xi(θ)) is dimensionally reducible if, for each i ∈ N , there are twice-
continuously differentiable functions hi : R2 → Xi and ri : Θ−i → R such that ri(.)
is increasing and xi(θ) = hi(θi, ri(θ−i)) for all θ ∈ Θ. The condition is trivially true
when there are two individuals. If there are more than two, a player’s decision rule can
depend on her own type directly, but it must depend on her opponents’ types indirectly
through a real-valued aggregate. Taking types in [0, 1], it excludes, for example, x for
which x1(θ) = θθ2θ3

1 + θ1 + θ2 + θ3.
22

20Any quasi-order is transformed into a partially ordered set using equivalence classes.
21See Milgrom and Roberts [42] (p.189-190) for a related result.
22To see why, h1(θ1, r1) = θ

z(r1)
1 + θ1 + r1 for some z : R → R and r1(θ−1) = θ2 + θ3. But there is

no z such that z(θ2 + θ3) = θ2θ3 for all θ−1, because z(0 + 1) 6= z(.5 + .5).
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Theorem 3 Let the valuation functions be twice-continuously differentiable and f =
(x, t) be a scf whose decision rule is dimensionally reducible. If f is implementable,
then there are transfers t∗ such that (x, t∗) is optimally supermodular implementable.

The theorem says that, in twice-continuously differentiable environments, all im-
plementable scf whose decision rule satisfies the dimensionality condition are optimally
supermodular implementable.

5.3.2 Unique Implementation and Full Efficiency

After providing conditions for the smallest interval prediction, it is natural to study
situations where truthtelling is the unique equilibrium of the induced supermodular
game. All learning dynamics then converge to the equilibrium. This is the concept of
unique supermodular implementation. As a by-product, it implies coalition-proof Nash
implementation by Milgrom and Roberts [43].

This section also supports what appears to be a conflict between full efficiency and
learning. Example 1 already delivered the message: Sometimes the designer must sacri-
fice either learning or efficiency. Either she modifies the expected externality mechanism
and secures learning at the price of a balanced budget (full efficiency), or she loses the
strong learning properties by balancing budget via the expected externality mechanism.

Definition 6 A scf f = (x, t) is uniquely supermodular implementable if it is super-
modular implementable and the truthful equilibrium is the unique Bayesian equilibrium.

The main result (Theorem 4) gives sufficient conditions for a scf to be uniquely
supermodular implementable. If truthtelling is an equilibrium and if the mechanism
induces utility functions whose complementarities between announcements are smaller
than the complementarities between own announcement and type, then the truthful
equilibrium is unique. This result is followed by Proposition 3 which focuses on optimal
transfers. These transfers indeed produce the smallest interval prediction, so a natural
question to ask is when they actually lead to unique implementation.

The results use the concepts of γ-increasing differences and bounded complements.
The first one strengthens the condition of Proposition 1 by requiring that the marginal
expected value be “sufficiently” increasing in a player’s announcement. The second
condition is defined as follows. The valuation functions and the decision rule produce
bounded complements if (−V, x) has bounded substitutes. Likewise, say that ui ◦ f has
bounded complements if the same definition is satisfied when transfers are included.

Theorem 4 Let the valuation functions be continuously differentiable, and let f =
(x, t) be a scf with a differentiable decision rule whose composition with the valuations
has γ-increasing differences and is ω-Lipschitz. Suppose ui◦f has complements bounded
by κi and transfers are β-Lipschitz. If f is supermodular implementable and κi <
γi/(n− 1), then it is uniquely supermodular implementable.

Proposition 3 Let the valuation functions be twice-continuously differentiable, and
let f = (x, t) be a scf with a dimensionally reducible decision rule whose composition
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with the valuations has γ-increasing differences and is ω-Lipschitz. Letting

κi = max
j 6=i

max
(θ̂,θi)∈Θ×Θi

(
∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

− min
θi∈Θi

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

)
,

if κi < γi/(n− 1) for all i, then (x, t∗) is uniquely supermodular implementable.

The proofs appear in Appendix B. On the one hand, for large γi, the complementar-
ities between own announcement and type are so strong that players tend to announce
high types regardless of their opponents’ deceptions. This favors uniqueness. On the
other hand, for large κi, the complementarities between players’ announcements are so
strong that it is source of multiplicity. The theorem provides a cutoff between those
forces so that, for any profile greater (smaller) than the truthful equilibrium, there is
a player for whom it is not optimal to increase (decrease) her truthful strategy to the
strategy of that profile. From Theorem 4, the proposition is quite intuitive. To make
the induced game supermodular for each vector of types, we may have to add comple-
mentarities which are unnecessarily large for some types, but just sufficient for some
other types. The condition ensures these differences across types are not too large.

The following examples show that there are cases where it is straightforward to
apply the previous results. Besides, Example 4 describes a situation where the original
mechanism induces a non-supermodular game with multiple equilibria and where the
truthful equilibrium is unstable. Yet the decision rule is uniquely supermodular imple-
mentable by Theorem 4. Interestingly, this also illustrates how weak implementation
can be turned into strong implementation.

Example 3 Consider the public goods example of Section 2. Recall that agents’ val-
uation functions are V1(x, θ1) = θ1x − x2 and V2(x, θ2) = θ2x + x2/2. The decision
rule is x(θ) = θ1 + θ2. Since ∂xi(θ)/∂θi = 1 and ∂2Vi(x, θi)/∂x∂θi = 1 for i = 1, 2, it
implies γi = 1, i = 1, 2. Moreover, ∂2Vi(x(θ̂), θi)/∂θ̂1θ̂2 = −2 if i = 1 and 1 if i = 2. By
Proposition 3, κi = 0 for i = 1, 2 and (x, t∗) is uniquely supermodular implementable.

Example 4 Reconsider the public goods example of Section 2. Instead of the expected
externality transfers t, suppose that the designer uses t̃i(θ̂) = ti(θ̂) − 3θ̂iθ̂j + 3

2
θ̂i for

i = 1, 2. There, the game induced by the mechanism is not supermodular with respect
to the natural order on R. This game has many equilibria, two of them being the
following. In the first one, agent 1 always announces 0 for any type and agent 2 always
announces 1 for any type. In the second one, agents switch roles. Moreover, truthtelling
is an equilibrium, but it is highly unstable. Any perturbation results in a departure
from truth-revealing. However, this situation falls into Theorem 4.

The rest of this subsection deals with the multiple equilibrium problem under the
budget balance condition. The next proposition shows that there are scf that are
uniquely supermodular implementable with balanced transfers. It gives sufficient con-
ditions in order that the transfers identified in Theorem 2 yield truthtelling as a unique
equilibrium. The proof is in Appendix B.
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Proposition 4 Let n ≥ 3. Let decision rule x(.) and the valuation functions be con-
tinuously differentiable such that their composition has γ-increasing differences and pro-
duces complements and substitutes bounded (resp.) by τi and Ti. If the decision rule
is allocation-efficient and τi − Ti < γi/(n − 1), then (x, tBB) is uniquely supermodular
implementable.

The next examples illustrate some interesting implications of Proposition 4. There
are situations, like Example 5, where the proposition can be used easily. Also, it is well-
known that dominant-strategy implementation may be incompatible with balancing
budget (Green and Laffont [22] and Laffont and Maskin [31]). In Example 6, the
proposition allows to balance budget in cases where dominant strategies cannot; while
the solution concept is weaker, truthtelling is the unique Bayesian equilibrium of a
supermodular game. The last example illustrates the potential conflict in supermodular
implementation between budget balancing and the multiple equilibrium problem. One
may argue that a second-best approach could be appropriate: Choosing the “best” scf
among those that have nice learning characteristics.

Example 5 Consider the same setting as the public goods example of Section 2 with
an additional player, player 3, whose type is independently distributed from the other
player’s types in Θ3 = [0, 1]. Player 3’s valuation function is V3(x, θ3) = θ3x. Let
X = [0, 3] and x(θ) = θ1 + θ2 + θ3. Then x is allocation-efficient and γi = 1 for
i = 1, 2, 3. Since τi = Ti for i = 1, 2, 3 and T1 = −2, T2 = 1, T3 = 0, Proposition 4
says that for any {ρi} such that 2 < ρ1 < 21

2
, −1 < ρ2 < −1

2
, 0 < ρ3 < 1

2
, (x, tBB) is

uniquely supermodular implementable with a balanced budget.

Example 6 In the public goods example of Section 2, let Θ1 = Θ2 = [2, 3]. Add a third
player, player 3, whose type is independently distributed from the other player’s types
in Θ3 = [2, 3]. Player 3’s valuation function is V3(x, θ3) = θ3x−ln x. Letting X = [5, 10],
the allocation-efficient decision rule is x(θ) = 1

2
(θ1 + θ2 + θ3 +

√
(θ1 + θ2 + θ3)2 − 4).

By Theorem 3.1 in [31], the decision rule is dominant strategy implementable only if
transfers are of the Groves form. The necessary condition for those transfers to balance
budget (Theorem 4.1 in [31]) is violated. Nevertheless, since τ1−T1 ≈ 0.022 and γ1 > 1,
τ2 − T2 ≈ 0.03 and γ2 > 1, τ3 − T3 ≈ 0.011 and γ3 > 1, Proposition 4 implies that x is
uniquely supermodular implementable with a balanced budget.

Example 7 Add player 3 in the public goods setting of Section 2. Player 3’s type is
uniformly distributed in [0, 1] and independently from the other player’s types. Her val-
uation function is V3(x, θ3) = θ3x−x3. The decision rule x(θ) = 1

6
(
√

1 + 12(θ1 + θ2 + θ3)
−1) is allocation-efficient and dimensionally reducible. The designer has the choice be-
tween the budget balanced transfers tBB and the optimal transfers t∗. On the one hand,
if she prefers full efficiency, then she must choose ρ1 ≥ 8, ρ2 ≥ 5 and ρ3 ≥ 6 in order
for the balanced transfers to induce a supermodular game. From Proposition 2, she
will choose the binding values. The supermodular game induced by (x, tBB) admits un-
truthful extremal equilibria and its interval prediction is the whole space. On the other
hand, if she prefers strong learning properties, then she will use optimal supermodular
implementation. It turns out that optimal transfers induce a supermodular game where
truthtelling is the unique Bayesian equilibrium, but they are not balanced.
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Before turning to applications of supermodular implementation, some remarks are
in order.

Remarks.

1. There are two usual ways of obtaining uniqueness in a Bayesian game. One is to
impose conditions on the utility functions and the other is to impose conditions on
the information structure. Theorem 4 belongs to the first class. In Example 2, there
is a point beyond which increasing ρi results in multiple equilibria. This shows that,
in this context, any result of the first class will resemble Theorem 4 and involve a
cutoff expression in terms of complementarities (κ) and some other parameter (γ).23

The usefulness of Theorem 4 also comes from its recommendation of an explicit upper
bound on the degree of complementarity (e.g ρi) generated by the transfers.

2. Optimal supermodular implementation is based on the idea of imposing the weakest
“admissible” amount of complementarity. But weak complementarities might imply a
low speed of convergence of learning dynamics towards truthtelling. This is not neces-
sarily true. Sometimes, when strictly-dominant strategy implementation is possible,
the optimal transfers coincide with the dominant strategy transfers (E.g in the lead-
ing example). Then the optimal transfers guarantee the fastest convergence; however,
they sometimes deliver a slower convergence than it is possible. Although convergence
is possible in one period in Example 7, it takes longer under the optimal transfers.24

In addition, there exist scf which are uniquely supermodular implementable without
being dominant strategy implementable (Example 8).25

3. Neither unique nor optimal supermodular implementation implies the other. The
truthful equilibrium may be unique, although the transfers are not optimal, and the
transfers could be optimal but the truthful equilibrium not unique.

23Note that increasing differences in own type and announcement is a concavity condition in the game
with transfers. Thus the property of γ-increasing differences is related to the notion of γ-concavity
(Rockafellar [48]), which is a form of strong concavity. Other papers (See e.g Bisin et al. [6]) exploit
similar trade-offs between Lipschitz constants to obtain uniqueness results, which conveys the idea
that utility functions which are “more concave than supermodular” favor uniqueness. Theorem 4 is
also inspired by recent theories of uniqueness in Bayesian games (Mason and Valentinyi [37]).

24If the composition of any player’s valuation function with the decision rule has strictly increasing
differences in type and own announcement, Mookherjee and Reichelstein [45] implies that there exist
transfers resulting in strictly-dominant strategy implementation (See Proposition 2 in Mookherjee and
Reichelstein [45] and the discussion that follows).

25When Mookherjee and Reichelstein [45] applies, the choice of transfers is narrow, whereas the
present results may provide a whole range of transfers compatible with unique supermodular imple-
mentation. In the public goods example, there are infinitely many ρ1 and ρ2 resulting in unique
supermodular implementation; but it must be that ρ1 = 2 and ρ2 = −1 to achieve (strictly) dominant
strategy implementation.
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6 Applications

6.1 Principal Multi-Agent Problem

This subsection applies the theory to contracting between some agents and a prin-
cipal. Consider the traditional principal-agent problem with hidden information. A
principal contracts with n agents. Agent i’s type space is [θi, θi]. Types are inde-
pendently distributed according to a common prior φ = ×φi which admits a bounded
density with full support. Let Xi ⊂ R be compact. Each agent i exerts some observable
effort xi ∈ Xi, and she bears a cost or disutility ci(xi, θi) from producing effort xi when
she is of type θi. From the vectors of efforts x = (x1, . . . , xn) and types θ = (θ1, . . . , θn),
the principal receives utility w(x, θ). The principal faces the problem of designing an
optimal contract subject to incentive constraints and reservation utility constraints for
the agents. A contract is a function that maps each possible agents’ type into effort
and transfer levels. The principal’s problem can be stated as

(x∗, t̃) ∈ argmax
f=(x,t)

Eθ

[
w(x(θ), θ)−

n∑
i=1

ti(θ)

]
(8)

subject to

Eθ−i
[ti(θi, θ−i)− ci(xi(θi, θ−i), θi)] ≥ Eθ−i

[ti(θ
′
i, θ−i)− ci(xi(θ

′
i, θ−i), θi)], ∀ θ′i, θi (9)

Eθ−i
[ti(θi, θ−i)− ci(xi(θi, θ−i), θi)] ≥ ui, ∀ θi (10)

Condition (9) requires truthtelling to be an equilibrium. Condition (10) is an interim
participation constraint, as agents may opt out of the mechanism if it does not meet
their reservation utility.

Suppose that the underlying functions w, ci and φ are smooth and guarantee the
existence of a solution such that x∗ is dimensionally reducible. Applying Theorem 3,
there are transfers t∗ such that (x∗, t∗) is optimally supermodular implementable and
solves (8) subject to (9) and (10). In words, if the principal is in a position to engage in a
smooth revenue-maximizing and incentive-compatible contract which allows voluntary
participation, then she can also turn it into a supermodular contract where agents lie
“as little as possible” in equilibrium.

At this level of generality, it is difficult to appreciate the strength of optimal su-
permodular implementation, so I present a simple example in the spirit of the team
production model of McAfee and McMillan [34].

Example 8 There are two agents, 1 and 2, whose types are independently uniformly
distributed in [0, 3]. Players exert some effort to produce an observable contribution
xi. The amount of effort ei necessary for xi is e1(x, θ1) = (3 − θ1)(x1 − x2) + x1 and
e2(x, θ2) = (3 − θ2)(x2 + x1). Larger contributions require larger effort and higher
ability levels decrease marginal effort. But agent 2 generates positive externalities on
her counterpart, whereas 1 has negative externalities. Given x = (x1, . . . , xn), the
principal only knows the density f(y|x) of output y given x. Suppose f has support
[0, y], y > 0. The principal has utility function u(y, x, θ) and perceives costs as cp(x, θ).
Costs are given by the sum of the production cost and the cost of inducing the agents
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to reveal their private information. Therefore, the above constrained maximization (8)
comes down to

x∗(θ) ∈ argmax
(x1,...,xn)

Ey|x[u(y, x, θ)]− cp(x, θ). (11)

For simplicity, let u(y, x, θ) = y + θ2(θ1x1 + x2) and let the production costs be
such that cp(x, θ) = x2

1/2 + θ1E(θ2)x1 + x2
2/2 + θ1x2. The decision rule obtained

from (11) is (x∗1(θ), x
∗
2(θ)) = (θ2θ1 − θ1E(θ2), θ2 − θ1). Let i’s valuation function be

Vi(x, θi) = −c(ei(x, θi)) where c(ei) = ei.
26 Decision rule x∗(.) satisfies the conditions of

Proposition 7 of Appendix B, so there exist transfers t such that (x∗, t) is implementable.
Constructing optimal transfers from (16) and (17) gives t∗1(θ̂) = −θ̂2

1/2 − 3θ̂1 + 4θ̂2θ̂1

and t∗2(θ̂) = −5θ̂2
2/4 + 3θ̂2 + 3θ̂2θ̂1. Truthtelling is the unique Bayesian equilibrium of

the supermodular game induced by the mechanism with optimal transfers.

6.2 Approximate Supermodular Implementation

In this section, I generalize some of the previous results within the context of ap-
proximate (or virtual) implementation.27 Supermodular implementation is useful in
many applications where the outcome space is at least as “rich” as the type spaces.
When type sets are finite, Theorem 1 always applies. When the type sets and the out-
come space are continua, it applies to general models such as principal multi-agent and
public goods models. The recourse to approximate implementation is justified when
the outcome space is finite while type sets are continuous; I describe two binary-choice
models that violate bounded substitutes. The results for approximate implementation
apply to public goods, auctions and bilateral trading (Myerson and Satterthwaite [46].)

Consider the following auction model. Let buyer i’s type space be Θi ≡ [θi, θi].
Buyer i’s utility function takes the linear form ui(xi, θi) = θixi + ti. Consider the
allocation-efficient decision rule which attributes the good to the agent with the highest
type. For i ∈ N and all θ,

x∗i (θ) =

{
1 if θi ≥ max{θj : j ∈ N}
0 otherwise

and
∑
j∈N

x∗j(θ) = 1 (12)

Take N = {1, 2}. For any θ′′2 > θ′′1 > θ′2 > θ′1, x1(θ
′′
1 , θ

′′
2) − x1(θ

′
1, θ

′′
2) − x1(θ

′′
1 , θ

′
2) +

x1(θ
′
1, θ

′
2) = −1. Hence, for substitutes to be bounded, there must exist T such that

−θ1 ≥ T (θ′′1 − θ′1)(θ
′′
2 − θ′2) for all θ1 ∈ Θ1. But this is clearly impossible as we can

maintain the order θ′′2 > θ′′1 > θ′2 > θ′1 while θ′1 ↑ θ′2 and θ′′1 ↓ θ′2. So Proposition 1 does
not apply.

Consider now a situation in which n agents must decide whether to undertake a
public project with cost c. The decision rule x(.) takes values in {0, 1}. Let i’s type

26The one-dimensional condensation property of Mookherjee and Reichelstein [45] is violated. There
exists no h1 : X → R such that c(e1(x, θ1)) = D1(h1(x), θ1) for some D1 : R × Θ1 → R. Moreover,
note that V1(x∗(θ̂), θ1) does not have increasing differences in (θ̂1, θ1), so x∗(.) is not dominant-strategy
implementable by Definition 5 in Mookherjee and Reichelstein [45].

27See Abreu and Matsushima [1] and Duggan [17].
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space be [θi, θi]. Agents’ utility function takes the same linear form. The allocation-
efficient decision rule is x∗(θ) = 1 if

∑
i∈N θi ≥ c and 0 otherwise. A similar reasoning

establishes that substitutes are unbounded.
Clearly, the problem is caused by the lack of smoothness in those decision rules.

Approximate implementation solves this difficulty. According to the next definition, a
scf is approximately supermodular implementable if, in any ε-neighborhood of that scf,
there exists a supermodular implementable scf.

Definition 7 A decision rule x(.) is approximately (optimally) supermodular imple-
mentable, if there exists a sequence of (optimally) supermodular implementable scf

{(xn, tn)} such that, for 1 ≤ p < ∞, limn→∞(
∫

Θ
|xn,i − xi|p)

1
p = 0 for all i.

The next two results say that, for twice-continuously differentiable valuations that
satisfy increasing differences, monotone Lp(Θ)-decision rules are approximately super-
modular implementable. The main idea is that smooth scf satisfy the bounded substi-
tutes assumption and they are dense in Lp-spaces. Moreover, if the decision rule also
satisfies the dimensionality condition, then it is approachable by optimally supermod-
ular implementable scf.

Proposition 5 Let the valuation functions be twice-continuously differentiable such
that ∂Vi(xi, θi)/∂θi is increasing in xi. If the decision rule xi(.) ∈ Lp(Θ) is increasing

in θ̂i, then x(.) is approximately supermodular implementable.

Proposition 6 Let the valuation functions be twice-continuously differentiable such
that ∂Vi(xi, θi)/∂θi is increasing in xi. If x(.) is a decision rule for which there exist a
bounded function hi and a continuous function ri such that xi(θ) = hi(θi, ri(θ−i)), hi is
increasing in θi and ri is strictly increasing for all i ∈ N ,28 then x(.) is approximately
optimally supermodular implementable.

In the above auction and public goods settings, it follows as a corollary of Proposition
6 that the efficient decision rules are optimally and approximately supermodular imple-
mentable.29 The bargaining mechanism of Myerson and Satterthwaite ([46], p.274) also
satisfies the assumptions of Proposition 6 and as such, the decision rule is approachable
by a sequence of optimally supermodular implementable decision rules. The expected
gains from trade along the sequence converge to the maximal expected gains.

Propositions 5 and 6 work under the assumption that if we cannot exactly imple-
ment a scf and maintain learning properties, then we may be willing to accomplish these
goals for arbitrarily close scf. This suggests that there may be a dilemma between close
implementability and stability or learning. This supports Cabrales [7] where a similar
trade-off is formalized for Abreu and Matsushima [1] and [2].

Remark. Even though Proposition 6 applies to all bounded and monotone decision
rules, it involves conditions that imply dominant strategy implementability by Mookher-
jee and Reichelstein [45]. The choice between (optimal) supermodular approximate

28The function ri is strictly increasing if ri(θ′′−i) > ri(θ′i) whenever θ′′−i À θ′−i.
29Consider the auction setting. Clearly, V is C2 and ∂Vi(xi, θi)/∂θi = xi is increasing in xi. For all

i, let hi(θi, ri) = 1 if θi > ri and 0 otherwise. The function hi is bounded and increasing in θi. Now
choose ri(θ−i) = max{θj : j 6= i} which is continuous and strictly increasing.
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implementation and dominant strategy implementation is ambiguous, because the ex-
istence of dominant strategies does not prevent adaptive dynamics from converging to
an “unwanted” equilibrium,30 to a non-equilibrium profile or simply from cycling in the
induced game (See Saijo et al. [49]).

7 A Revelation Principle for Supermodular Bayesian

Implementation

Supermodular implementation is widely applicable in quasilinear environments even
though the paper limits attention to direct mechanisms. For general preferences, how-
ever, direct mechanisms may be restrictive. The Revelation Principle says that direct
mechanisms cause no loss of generality under traditional weak implementation. But
how restrictive are direct mechanisms in supermodular Bayesian implementation for
general preferences?

It is particularly relevant to analyze this question, because the challenge in any
supermodular design problem is to specify an ordered message space and an outcome
function so that agents adopt monotone best-responding behaviors. The set of all
possible message spaces and orders on those spaces is so large that it might seem
intractably-complex. A Supermodular Revelation Principle gives conditions so that, if a
scf is supermodular implementable, then there exists a direct-revelation mechanism that
supermodularly implements this scf truthfully. It is a technical insight which reduces
the space of mechanisms to consider to the space of direct-revelation mechanisms. The
question is complex because it is combinatorial in essence; it pertains to the existence
of orders on type spaces that make the (induced) direct-revelation game supermodular.

Example 9 in Appendix A shows that, unfortunately, there exist supermodular im-
plementable scf that are not truthfully supermodular implementable. Consequently, the
revelation principle fails to hold in general for supermodular implementation. Never-
theless, it exists in a weaker form, as captured by the next theorem. Although it is not
as general as the traditional revelation principle, it measures the restriction imposed
by direct mechanisms and gives conditions that may warrant their use.

As mentioned in Section 4, there are issues related to non-Euclidean message spaces
that justify the next and more general definition of supermodular implementability.

Definition 8 The mechanism Γ supermodularly implements the scf f(.) if there exists
a Bayesian equilibrium m∗(.) such that g(m∗(θ)) = f(θ) for all θ ∈ Θ, and if the
(ex-ante) induced game G is supermodular.

Theorem 5 (The Supermodular Revelation Principle for Finite Types31)
Let type space Θi be a finite set for i ∈ N . If there exists a mechanism ({(Mi,ºi)}, g)
that supermodularly implements the scf f such that there is a Bayesian equilibrium m∗(.)
for which g ◦m∗ = f and m∗

i (Θi) is a lattice, then f is supermodular implementable.

30An unwanted equilibrium can be an equilibrium in dominant strategies whose outcome is different
from the social choice function or it can be a “non-dominant” strategy equilibrium.

31In Mathevet [38], I generalize the definition of supermodular implementability to incorporate orders
that are not pointwise orders. This allows to prove a supermodular revelation principle for continuous
types.
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Corollary 3 Let type spaces be finite sets. If there exists a mechanism ({(Mi,ºi)}, g)
with totally ordered message spaces that supermodularly implements the scf f such that
there is a Bayesian equilibrium m∗(.) for which g ◦ m∗ = f , then f is supermodular
implementable.

According to the supermodular revelation principle, limiting attention to direct
mechanisms amounts to restricting one’s scope to mechanisms where the equilibrium
strategies are lattice-ranged. When the range of the equilibrium strategies is a lattice,
it is possible to construct an order on each player’s type space that makes it order-
isomorphic to the range of her equilibrium strategy. By order-isomorphism, type spaces
become lattices under this order and it also preserves supermodularity from the indirect
mechanism to its direct version. Therefore, the transmission channel is the range of
the equilibrium strategies. Besides, the theorem states conditions that are verifiable a
posteriori. It may be useful to know when a complex mechanism can be replaced with
a simpler direct mechanism.

Corollary 3 says that if the designer is only interested in mechanisms where the
message spaces are totally ordered, then she can look at direct mechanisms without
loss of generality.

The theorem only gives sufficient conditions for revelation; but in those cases where
a supermodular direct mechanism exists while the lattice condition is violated, the
existence of an order has little or nothing to do with a revelation principle. In the spirit
of Echenique [19], there may be conditions on the scf and the utility functions such
that an order exists for which the game is supermodular. Since this existence would
not follow from implementability, it is not a revelation approach.

8 Interpreting Learning in Bayesian Games

The learning literature has a straightforward application to games of incomplete
information which is the approach taken in the paper. In the context of Bayesian im-
plementation, the learning results of supermodular games find a natural interpretation
in the ex-ante Bayesian game. Loosely, learning at the ex-ante stage may be interpreted
as pre-playing the mechanism. At this stage, agents do not know their own type and
they can be viewed as practicing the induced game repeatedly. Each agent submits a
deception at each round until the designer collects the agreed-upon profile of deceptions,
and types are revealed. Until then, no outcome is actually implemented. Learning at
the ex-ante stage may also mean that agents are actually playing the mechanism repeat-
edly with independently and identically distributed types across periods. As a round
begins, the agents do not know their own type yet, hence they submit a deception. By
the end of the round, they learn their type and behave according to their deception.
An outcome is then implemented at the end of each round. Here the designer is only
interested in implementing the desired outcome in the long-run.

Although the learning results only apply directly to the ex-ante Bayesian game,
they can be interpreted in the interim formulation. The interim Bayesian game inherits
the complementarities, because most results work by showing that the ex-post game is
supermodular for every type profile. However, the problem at this stage comes from
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the interpretation of learning and the technical difficulties related to the Milgrom-
Roberts learning theorem. To illustrate the first difficulty, suppose that there are two
agents. At the interim stage, each agent knows her own type and so she makes a
single announcement at each period that the mechanism is repeated. But to compute
her expected utility, an agent uses the prior distribution and the opponent’s deception
telling her what is played for each type. Since the opponent no longer announces a
deception, an agent is unable to compute her expected utility. One way of interpreting
learning then is to consider that there is a continuum of agents, and that prior belief
φ actually represents the distribution of types in this population. An agent now faces
a continuum of announcements (one for each opponent) as the mechanism is repeated,
hence she can compute her expected utility. The interpretation of the process, however,
becomes evolutionary in nature. We are now interested in that the observed proportions
of types converge to the true proportions in the population. On the technical side, Van
Zandt [57] shows that there are issues in applying some results of supermodular games to
interim Bayesian games. But his results can be used to show that the Milgrom-Roberts
learning theorem applies to the interim Bayesian game.32

9 Conclusion

This paper introduces a theory of implementation where the mechanisms implement
scf in supermodular game forms. Supermodular implementation differs from the previ-
ous literature by its explicit purpose and methodology. The paper does not put an end
to the question of learning and stability in incentive design and implementation, but
it explicitly attacks it and provides answers to this important yet neglected question.
Given that mechanisms are designed to achieve some equilibrium outcome, it is rather
important to design mechanisms that enable boundedly rational agents to learn to play
some equilibrium outcome. The methodology consists in inducing supermodular games
rather than starting explicitly with a solution concept. Of course, supermodularity im-
plies properties of iterative dominance, but it has stronger theoretical and experimental
implications (See e.g Camerer [10]). The mechanisms derive their properties from the
game that they induce and not directly from the solution concept.

Beyond the results, the paper brings out basic questions about learning and the
design problem. We may wonder whether there is a price to pay for learning or sta-
bility in terms of efficiency. The trade-off appears quite clearly in this framework;
sometimes the designer must sacrifice learning for full efficiency or vice-versa. In the
public goods example, the designer can modify the expected externality mechanism and
secure learning at the price of a balanced budget, or she can use the expected exter-
nality mechanism to balance budget but she loses the strong learning properties. This
may be related to the specifics of supermodular implementation, but it is an interesting
issue. We may also wonder whether there is a price to pay for learning or stability in
terms of closeness of the decision rule implemented. This has obvious implications in

32The results in [39] can only be directly applied to the ex-ante version G. However, Lemma 2,
Proposition 3, Lemma 5 and Proposition 5 in Van Zandt [57] are particularly useful to apply the
learning theorem to the interim formulation. This requires, however, that the utility functions (with
transfers) be continuous in the announcement profile.
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terms of efficiency. Cabrales [7] also suggests a dilemma between learning and close
implementability for the Abreu-Matsushima mechanism, and it is verified in the su-
permodular implementation framework. Although this dilemma may be related to the
specifics of these frameworks, it is a question with potentially important consequences.

The paper raises issues that have not been discussed. The multiple equilibrium prob-
lem in supermodular implementation suggests an alternative solution, namely strong
implementation. Strong implementation requires all equilibria of the mechanisms to
yield desired outcomes. Instead of relying on weak implementation, supermodular im-
plementation could be based on strong implementation which would justify indirect
mechanisms. Even under strong implementation, learning dynamics may cycle within
the interval prediction and players may learn to play a non-equilibrium profile. Al-
though strong supermodular implementation cannot substitute for unique supermodu-
lar implementation, it is an avenue to explore.

Like many Bayesian mechanisms, the present mechanisms are parametric in the
sense that they rely on agents’ prior beliefs. Thus the designer uses information other
than that received from the agents (Hurwicz [26]). It may be interesting to design
nonparametric supermodular mechanisms. This is yet another justification for indirect
mechanisms, as nonparametric direct Bayesian mechanisms impose dominant-strategy
incentive-compatibility (Ledyard [32]).

Finally, it is important to pursue testing supermodular games. Since supermodular
Bayesian implementation provides a general framework, it is a good candidate for ex-
perimental tests. From a practical viewpoint, discretizing type spaces may simplify the
players’ task of announcing deceptions at each round. But there are also simple envi-
ronments with continuous types where announcing a deception is equivalent to choosing
a real number, such as the leading public goods and the team-production examples.33.

Appendix A

This example shows that the revelation principle fails to hold in general for supermod-
ular Bayesian implementation.

Example 9 Consider two agents, 1 and 2, with type spaces Θ1 = {θ1
1, θ

2
1} and Θ2 =

{θ1
2, θ

2
2, θ

3
2}. Prior beliefs assign equal probabilities to all θ ∈ Θ. Let X = {x1, . . . , x12}

be the outcome space. Agent 1’s preferences are given by utility function u1(xn, θ1)
such that:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

u1(xn, θ
1
1) −10 0 16 −13 −2 33 −21 −2 18 −19 0 36

u1(xn, θ
2
1) −10 0 16 −21 −2 18 −13 −2 33 −19 0 36

Let u2 be a constant function. Let the scf f be defined as follows

f(., .) θ1
2 θ2

2 θ3
2

θ1
1 x4 x5 x6

θ2
1 x7 x8 x9

33In the public goods example of Section 2, announcing an optimal deception comes down to choosing
an intercept in a compact set (See (1)). In Example 8, optimal deceptions are characterized by a positive
slope.
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Consider the following indirect mechanism Γ = ((M1,º1), (M2,º2), g). Agent 1’s mes-
sage space is M1 = {m1,m

1
1, m2

1, m1}; º1 is such that m1
1 and m2

1 are unordered, m1

is the greatest element and m1 is the smallest element. Agent 2’s message space is
M2 = {m2,m

1
2, m2}; º2 is such that m2 º2 m1

2 º2 m2. The outcome function g is given
by

g(., .) m2 m1
2 m2

m1 x1 x2 x3

m1
1 f(θ1

1, θ
1
2) f(θ1

1, θ
2
2) f(θ1

1, θ
3
2)

m2
1 f(θ2

1, θ
1
2) f(θ2

1, θ
2
2) f(θ2

1, θ
3
2)

m1 x10 x11 x12

I show that mechanism Γ supermodularly implements f in Bayesian equilibrium. Given
u2 is constant, any strategy m2 : Θ2 → M2 is a best-response to any strategy of 1. So,
consider strategy m∗

2(.) such that m∗
2(θ

1
2) = m2, m∗

2(θ
2
2) = m1

2 and m∗
2(θ

3
2) = m2. Since

for all m1 we have
∑

m2
u1(g(m1

1,m2), θ
1
1) >

∑
m2

u1(g(m1,m2), θ
1
1)∑

m2
u1(g(m2

1,m2), θ
2
1) >

∑
m2

u1(g(m1,m2), θ
2
1)

1’s best-response m∗
1(.) to m∗

2(.) is such that m∗
1(θ

1
1) = m1

1 and m∗
1(θ

2
1) = m2

1. So
(m∗

1(.),m
∗
2(.)) is a Bayesian equilibrium and g ◦ m∗ = f . Moreover, for each θ1,

u1(g(m1,m2), θ1) is supermodular in m1 and has increasing differences in (m1, m2). This
implies that ug

1 is supermodular in m1(.) and has increasing differences in (m1(.),m2(.)),
because Σ1(Θ1) is endowed with the pointwise order. Therefore, Γ supermodularly im-
plements f in Bayesian equilibrium, because 2’s utility is constant.

Does this imply that there exists a mechanism ({(Θi,≥i)}, f) which truthfully im-
plements f in supermodular game form? By means of contradiction, suppose there is
such a mechanism. Then (Θ1,≥1) must be totally ordered, for otherwise Σ1(Θ1) cannot
be a lattice. Assume θ2

1 >1 θ1
1. Let θk

i (.) = θk
i regardless of i’s true type. Let θT

1 (.) be
the truthful strategy for 1 and let θL

1 (.) be constant lying. Note θ1
1(.) <1 θT

1 (.), θL
1 (.).

Moreover, θ1
2 and θ2

2 must be ordered, because Σ2(Θ2) is a lattice. Thus θ1
2(.) and θ2

2(.))
are ordered.

Since the direct mechanism must induce a supermodular game, uf
1(θ̂1(.), θ̂2(.)) must

satisfy the single-crossing property in (θ̂1(.), θ̂2(.)).
34 Given

−2 = uf
1(θ

T
1 (.), θ2

2(.)) ≥ uf
1(θ

1
1(.), θ

2
2(.)) = −2

−13 = uf
1(θ

T
1 (.), θ1

2(.)) > uf
1(θ

1
1(.), θ

1
2(.)) = −17

uf
1 satisfies the single-crossing property in (θ̂1(.), θ̂2(.)) only if θ1

2 >2 θ2
2. But

−2 = uf
1(θ

L
1 (.), θ2

2(.)) ≥ uf
1(θ

1
1(.), θ

2
2(.)) = −2

does not imply −21 = uf
1(θ

L
1 (.), θ1

2(.)) ≥ uf
1(θ

1
1(.), θ

1
2(.)) = −17. The single-crossing

property is violated. Now assume θ1
1 >1 θ2

1. Note θ1
1(.) >1 θT

1 (.), θL
1 (.). Given

−2 = uf
1(θ

1
1(.), θ

2
2(.)) ≥ uf

1(θ
L
1 (.), θ2

2(.)) = −2

−17 = uf
1(θ

1
1(.), θ

1
2(.)) > uf

1(θ
L
1 (.), θ1

2(.)) = −21

34The single-crossing property, defined in Section 3, is implied by increasing differences.
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uf
1 satisfies the single-crossing property in (θ̂1(.), θ̂2(.)) only if θ1

2 >2 θ2
2. But

−2 = uf
1(θ

1
1(.), θ

2
2(.)) ≥ uf

1(θ
T
1 (.), θ2

2(.)) = −2

does not imply −17 = uf
1(θ

1
1(.), θ

1
2(.)) ≥ uf

1(θ
T
1 (.), θ1

2(.)) = −13. The single-crossing
property is violated. The scf f is not truthfully supermodular implementable, although
it is supermodular implementable.

This example suggests that the conditions of Theorem 5 are somewhat minimally
sufficient. Agent 1’s equilibrium strategy is indeed not lattice-ranged and the scf is not
truthfully supermodular implementable. Whereas this example might indicate that the
pointwise-order structure causes revelation to fail, this is not the case. Allowing more
general order structures does not weaken the conditions for a revelation principle (See
Mathevet [38]).

Appendix B

The following lemma shows that if the complete information payoffs are supermod-
ular and have increasing differences, then the ex-ante payoffs are supermodular and
have increasing differences.

Lemma 1 Assume (Mi,≥i) is a lattice for i ∈ N . Suppose that, for each θi ∈ Θi,
ui(g(mi,m−i), θi) is supermodular in mi for each m−i and has increasing differences
in (mi,m−i). Then ug

i is supermodular in mi(.) ∈ Σi(Mi) for each m−i(.) and has

increasing differences in (mi(.),m−i(.)) ∈ Σi(Mi)×
{∏

j 6=i Σj(Mj)
}
.

The proof is omitted because it is simple.
The proof of the next Proposition is also omitted, because the result is standard

and its proof is similar to that of Proposition 23.D.2 in Mas-Colell et al. [36].

Proposition 7 Consider valuation functions V and a decision rule x(.) such that
Eθ−i

[Vi(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi).

(i)If the scf f =(x, t) is truthfully Bayesian implementable, then for all θ̂i

Eθ−i
[ti(θ̂i, θ−i)] = −Eθ−i

[Vi(xi(θ̂i, θ−i), θ̂i)]+

∫ θ̂i

θi

∂Eθ−i
[Vi(xi(s, θ−i), s)]

∂θi

ds+ ε(θi) (13)

(ii) Let the decision rule x(.) be such that ∂Eθ−i
[Vi(xi(θ̂i, θ−i), θi)]/∂θi is increasing

in θ̂i for each θi and i ∈ N . If transfers t satisfy (13), then the scf f = (x, t) is
implementable.

Proof of Proposition 2: Let (x, t′′) and (x, t′) be any supermodular implementable scf
such that t′′, t′ ∈ T and t′′ ºID t′. For any supermodular implementable scf, the induced
game has a smallest and a greatest equilibrium along with a truthful equilibrium in be-
tween. Let θT

i (.) denote player i’s truthful strategy, that is, θT
i (θi) = θi for all θi. Let G`

be the game G where the strategy spaces are restricted from Σi(Θi) to [inf Σi(Θi), θ
T
i (.)],
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and let Gu be the game G where the strategy spaces are restricted from Σi(Θi) to
[θT

i (.), sup Σi(Θi)]. Since closed intervals are sublattices and G is supermodular, those
modified games G` and Gu are supermodular games. Moreover, G` must have the same
least equilibrium as game G and the truthful equilibrium is its largest equilibrium. Like-
wise, Gu has the same greatest equilibrium as game G and the truthful equilibrium is
its smallest equilibrium. Let uf

i (θ̂(.), t) = Eθ[Vi(xi(θ̂(θ)), θi)]+Eθ[ti(θ̂(θ))]. I show that

(i) In G`, uf
i (θ̂i(.), θ̂−i(.), t) has decreasing differences in (θ̂i(.), t) for each θ̂−i(.) and (ii)

In Gu, uf
i (θ̂i(.), θ̂−i(.), t) has increasing differences in (θ̂i(.), t) for each θ̂−i(.). In those

modified games, this shows how the untruthful extremal equilibrium varies in response
to changes in transfers with respect to ºID. Before proving (i) and (ii), note that Propo-
sition 7 implies that all transfers ti such that (x, t) is implementable have the same ex-
pected value Eθ−i

[ti(θ̂i, θ−i)] up to a constant. Taking any implementable scf (x, t̃), those

transfers can thus be written ti(θ̂i, θ̂−i) = δi(θ̂i, θ̂−i)− Eθ−i
[δi(θ̂i, θ−i)] + Eθ−i

[t̃i(θ̂i, θ−i)]
for some function δi : Θ → R. First consider G` and let δ′′ and δ′ be the δ functions
corresponding to t′′ and t′. Choose any θ′′i (.) > θ′i(.) and notice that for any deception
θ̂−i(.), θ̂j(θj) ≤ θj for all θj and j 6= i. Moreover, note t′′ ºID t′ implies δ′′ ºID δ′. Hence
for all i ∈ N ,

Eθ[δ
′′
i (θ

′′
i (θi), θ−i)− δ′′i (θ′′i (θi), θ̂−i(θ−i))]− Eθ[δ

′′
i (θ′i(θi), θ−i)− δ′′i (θ′i(θi), θ̂−i(θ−i))]−

−Eθ[δ
′
i(θ

′′
i (θi), θ−i)− δ′i(θ

′′
i (θi), θ̂−i(θ−i))] + Eθ[δ

′
i(θ

′
i(θi), θ−i)− δ′i(θ

′
i(θi), θ̂−i(θ−i))] ≥ 0

(14)

But (14) is equivalent to

uf
i (θ

′′
i (.), θ̂−i(.), t

′′)+uf
i (θ

′
i(.), θ̂−i(.), t

′)−uf
i (θ

′′
i (.), θ̂−i(.), t

′)−uf
i (θ

′
i(.), θ̂−i(.), t

′′) ≤ 0 (15)

for each θ̂−i(.), which implies that uf
i (θ̂i(.), θ̂−i(.), t) has decreasing differences in (θ̂i(.), t)

for each θ̂−i(.). It follows from Theorem 6 in Milgrom-Roberts [39] that the smallest
equilibrium in G` is decreasing in t. The same argument applies to Gu. There, all de-
ceptions θ̂−i(.) are such that θ̂j(θj) ≥ θj for all θj and j 6= i. As a result, the sign in

(14) is reversed, which implies uf
i (θ̂i(.), θ̂−i(.), t) has increasing differences in (θ̂i(.), t)

for each θ̂−i(.). The greatest equilibrium in Gu is thus increasing in t. Q.E.D

Proof of Theorem 3: Suppose f = (x, t) is implementable and x is dimensionally
reducible. Letting

δi(θ̂i, θ̂−i) = −
∫ θ̂i

θi

∫ ri(θ̂−i)

ri(θ−i)

min
θi∈Θi

∂2Vi(hi(si, ri), θi)

∂ri∂si

dri dsi (16)

for all θ̂ ∈ Θ, I show that

t∗i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i)− Eθ−i
[δi(θ̂i, θ−i)] + Eθ−i

[ti(θ̂i, θ−i)] (17)

is well-defined and that (x, t∗) is optimally supermodular implementable. By Propo-
sition 1, Eθ−i

[ti(θ̂i, θ−i)] is well-defined and given by (13). Since Vi and hi are C2 on
an open set containing compact set Θi, minθi∈Θi

∂2Vi(hi(si, ri), θi)/∂ri∂si exists, it is
continuous in (ri, si) by the Maximum Theorem and it is bounded. Hence δi : Θ → R
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is continuous, which implies that it is Borel-measurable. Since δi is also bounded,
Eθ−i

[δi(., θ−i)] is well-defined and so is t∗i : Θ → R. The next step is to verify the
continuity requirements. As a continuous function on a compact set, δi is uniformly
continuous in θ̂, and so Eθ[t

∗(θ̂(θ))] is continuous in θ̂−i(.). Since V is C2, (13) is usc
in θ̂i and so is Eθ−i

[ti(θ̂i, θ−i)] by Proposition 1, which implies Eθ[t
∗
i (θ̂(θ))] is usc in

θ̂i(.). Put together, uf
i satisfies the continuity requirements. Finally I prove that (x, t∗)

is optimally supermodular implementable. Note Eθ−i
[t∗i (θ̂i, θ−i)] = Eθ−i

[ti(θ̂i, θ−i)] and
thus (x, t∗) is implementable. By construction, t∗i is twice-differentiable35 and

∂2t∗i (θ̂i, θ̂−i)

∂θ̂i∂θ̂j

=
∂2δi(θ̂i, θ̂−i)

∂θ̂i∂θ̂j

=
∂

∂θ̂j

∫ ri(θ̂−i)

ri(θ−i)

− min
θi∈Θi

∂2Vi(hi(θ̂i, ri), θi)

∂ri∂si

dri

= −
(

min
θi∈Θi

∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)

∂ri∂si

)
∂ri(θ̂−i)

∂θ̂j

. (18)

Because

− min
θi∈Θi

∂2Vi(xi(θ̂i, θ̂−i), θi)

∂θ̂i∂θ̂j

= − min
θi∈Θi

(
∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)

∂ri∂si

∂ri(θ̂−i)

∂θ̂j

)
(19)

and ri(.) is an increasing function, (18) and (19) are equal. Therefore, ∂2[Vi(xi(θ̂), θi)+
t∗i (θ̂)]/∂θ̂i∂θ̂j is equal to

(
∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)

∂ri∂si

− min
θi∈Θi

∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)

∂ri∂si

)
∂ri(θ̂−i)

∂θ̂j

≥ 0 (20)

for all θ̂, θi and j, i, and so (x, t∗) is supermodular implementable. Moreover, for all
transfers t ∈ T such that (x, t) is implementable, it must be that

∂2ti(θ̂)

∂θ̂i∂θ̂j

≥ − min
θi∈Θi

∂2Vi(xi(θ̂i, θ̂−i), θi)

∂θ̂i∂θ̂j

=
∂2t∗i (θ̂)

∂θ̂i∂θ̂j

for all θ̂ and j, i. This implies that (x, t∗) is optimally supermodular implementable.
Q.E.D

Proof of Theorem 4: By way of contradiction, suppose that the truthful equilibrium
is not the unique Bayesian equilibrium. Since the scf is supermodular implementable,
there exist a greatest and a smallest equilibrium in the game induced by the mechanism.
So, one of these extremal equilibria must be strictly greater/smaller than the truthful
one. Suppose that the greatest equilibrium, denoted (θi(.))i∈N ∈ ∏

Σi(Θi), is strictly
greater than the truthful equilibrium. That is, for all i ∈ N , θi(θi) ≥ θi for a.e θi, and
there exists N∗ 6= ∅ such that, for all i ∈ N∗, θi(θi) > θi for all θi in some subset of
types with positive measure.

I evaluate the first-order condition of agent i’s maximization program at the greatest
equilibrium; then, I bound it from above by an expression which cannot be positive for

35See previous footnote.
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all players (hence the contradiction). Consider player i’s interim utility for type θi

against θ−i(.):

Eθ−i
[Vi(xi(θ̂i, θ−i(θ−i)), θi)] + Eθ−i

[ti(θ̂i, θ−i(θ−i))]. (21)

Since Vi ◦ xi and ti are (resp.) ωi- and βi-Lipschitz and both differentiable in θ̂i for all
θ̂−i, we can apply the Bounded Convergence Theorem to show that for any deception
θ̂−i(.) the first-derivative of (21) with respect to θ̂i is

Eθ−i

[
∂Vi(xi(θ̂i, θ−i(θ−i)), θi)

∂θ̂i

]
+ Eθ−i

[
∂ti(θ̂i, θ−i(θ−i))

∂θ̂i

]
. (22)

Since ui ◦ f has complements bounded by κi, we have

Eθ−i

[
∂Vi(xi(θ̂i, θ−i(θ−i)), θi)

∂θ̂i

+
∂ti(θ̂i, θ−i(θ−i))

∂θ̂i

− ∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

− ∂ti(θ̂i, θ−i)

∂θ̂i

]
(23)

≤
∫

Θ−i

κi

∑

j 6=i

(θj(θj)− θj)φ−i(θ−i)dθ−i = κi

∑

j 6=i

Eθj
[θj(θj)− θj] (24)

By (23) and (24),

(22) ≤ κi

∑

j 6=i

Eθj
[θj(θj)− θj] + Eθ−i

[
∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

]
+ Eθ−i

[
∂ti(θ̂i, θ−i)

∂θ̂i

]
. (25)

By part (i) of Proposition 7,

Eθ−i

[
∂ti(θ̂i, θ−i)

∂θ̂i

]
= −Eθ−i


∂Vi(xi(θ

′
i, θ−i), θ̂i)

∂θ′i

∣∣∣∣∣
θ′i=θ̂i


 .

Therefore, (25) implies

(22) ≤ κi

∑

j 6=i

Eθj
[θj(θj)− θj] + Eθ−i

[
∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

− ∂Vi(xi(θ̂i, θ−i), θ̂i)

∂θ′i

]
. (26)

If, as claimed, it is optimal for each player i to play θi(θi) for a.e type θi, then the RHS
of (26) evaluated at θ̂i = θi(θi) must be positive for a.e θi and all i ∈ N . To see why,
let Θ∗

i ⊂ Θi be the set of types θi for which the RHS of (26) is strictly negative when
evaluated at θ̂i = θi(θi). Note that Θ∗

i is measurable by definition, because the RHS of
(26) is a measurable function in θi when θ̂i = θi(θi). By way of contradiction, suppose
there is a player i ∈ N for whom Θ∗

i has strictly positive measure. Since the RHS of
(26) is greater than (22), if θ̂i = θi(θi) then (22) is strictly negative for all θi ∈ Θ∗

i .
But for types θi ∈ Θ∗

i , [θi, θi(θi)] is available to player i. Thus there exists ε > 0 for
which the deception θ∗i : Θi → Θi defined as θ∗i (θi) = θi(θi) − ε1Θ∗i for all θi gives i a

strictly greater utility than θi(.). Notice θ∗i (.) ∈ Σi(Θi) because θi(.) ∈ Σi(Θi), so θ∗i (.)
improves on θi(.) which is a contradiction. As a result, Θ∗

i has null measure.
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Since it is optimal for each player i to play θi(θi) for a.e type θi, the RHS of (26)
at θ̂i = θi(θi) is positive for a.e θi and all i ∈ N . However, this leads to the following
contradiction. If the RHS of (26) is positive for a.e θi, then

0 ≤ κi

∑

j 6=i

Eθj
[θj(θj)− θj]+Eθi

[
∂Eθ−i

[Vi(xi(θi(θi), θ−i), θi)]

∂θ̂i

−

−∂Eθ−i
[Vi(xi(θi(θi), θ−i), θi(θi))]

∂θ̂i

]

≤ κi

∑

j 6=i

Eθj
[θj(θj)− θj] + γiEθi

[θi − θi(θi)] for all i ∈ N, (27)

where the last inequality follows from γi-increasing differences. Since κi/γi < 1/(n− 1)
by hypothesis and φj has full support for all j, (27) implies

∑

j 6=i

1

n− 1
Eθj

[θj(θj)− θj] ≥ Eθi
[θi(θi)− θi] for all i ∈ N, and

∑

j 6=i

1

n− 1
Eθj

[θj(θj)− θj] > Eθi
[θi(θi)− θi] for all i ∈ {i : {j 6= i} ∩N∗ 6= ∅}.

Hence ∑
i∈N

∑

j 6=i

1

n− 1
Eθj

[θj(θj)− θj] >
∑
i∈N

Eθi
[θi(θi)− θi]

which is a contradiction because both sides are equal by definition. It is not optimal
for all i ∈ N to play θ̂i = θi(θi) for a.e θi. Thus, there is no equilibrium that is greater
than the truthful equilibrium. The same argument applies to show that there is no
equilibrium that is smaller than the truthful equilibrium. Truth-revealing is the unique
equilibrium. Q.E.D

Proof of Proposition 3: Since the valuations and the decision rule produce γ-
increasing differences, ∂Eθ−i

[Vi(xi(θ̂i, θ−i), θi)]/∂θi is strictly increasing in θ̂i. Let trans-
fers be the optimal transfers defined by (16) and (17), where ti is given by (13). By
assumption, Eθ−i

[Vi(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi), so Proposition 7 and The-
orem 3 imply (x, t∗) is supermodular implementable. It follows from (20) that ui ◦ f
has bounded complements, because V and x are C2. The bound κi on complements is
computed as follows,

κi = max
j 6=i

max
(θ̂,θi)∈Θ×Θi

(
∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

− min
θi∈Θi

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

)
.

Since x is dimensionally reducible and V is C2, the first derivative of t∗i in θ̂i is uniformly
bounded above. Hence transfers are βi-Lipschitz in θ̂i. Applying Theorem 4 completes
the proof. Q.E.D

Proof of Theorem 2: Let
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Hi(θ̂−i) = −
(

1

n− 1

) ∑

j 6=i

Eθ̃−j

[∑

k 6=j

Vk(xk(θ̂j, θ̃−j), θ̃k)

]
,

and for ρi ∈ R, let

δi(θ̂i, θ̂−i) =
∑

j 6=i

ρiθ̂iθ̂j.

Define

tBB
i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i)− Eθ−i

[δi(θ̂i, θ−i)] + Eθ̃−i

[∑

j 6=i

Vj(xj(θ̂i, θ̃−i), θ̃j)

]
+ Hi(θ̂−i)−

− 1

n− 2

∑

j 6=i

∑

k 6=i,j

ρj θ̂j θ̂k +
1

n− 2

∑

j 6=i

∑

k 6=i,j

ρj θ̂jE(θk). (28)

First, (x, tBB) is implementable because x(.) is allocation-efficient and

Eθ−i
[tBB

i (θ̂i, θ−i)] = Eθ̃−i

[∑

j 6=i

Vj(xj(θ̂i, θ̃−i), θ̃j)

]
+ Eθ−i

[Hi(θ−i)],

which is the expectation of the transfers in the expected externality mechanism. Second,
note that for all θ,

∑
i∈N

(
δi(θi, θ−i)− 1

n− 2

∑

j 6=i

∑

k 6=i,j

ρjθjθk

)
=

∑
i∈N

δi(θi, θ−i)− 1

n− 2

∑
i∈N

∑

j 6=i

(n−2)ρiθiθj = 0

and

∑
i∈N

(
1

n− 2

∑

j 6=i

∑

k 6=i,j

ρjθjE(θk)− Eθ−i
[δi(θi, θ−i)]

)
=

=
1

n− 2

∑
i∈N

∑

j 6=i

(n− 2)ρiθiE(θj)−
∑
i∈N

Eθ−i
[δi(θi, θ−i)] = 0,

hence
∑
i∈N

tBB
i (θ) =

∑
i∈N

Eθ̃−i

[∑

j 6=i

Vj(xj(θi, θ̃−i), θ̃j)

]
+

∑
i∈N

Hi(θ−i) = 0,

because transfers are balanced in the expected externality mechanism. Furthermore,
tBB
i is clearly continuous in θ̂−i for each θ̂i and usc in θ̂i for each θ̂−i. From standard

arguments, Eθ[t
SM
i (θ̂i(θi), θ̂−i(θ−i))] is continuous in θ̂−i(.) and usc in θ̂i(.). Next I show

that it is possible to take ρi so that the complete information payoffs have increasing
differences in (θ̂i, θ̂−i). By assumption, there exists a lower bound Ti on the substitutes
from Vi ◦ xi(.). Set ρi > −Ti. Choose any θ′′−i ≥−i θ′−i and θ′′i > θ′i. From (28), note

tBB
i (θ′′i , θ

′′
−i)− tBB

i (θ′′i , θ
′
−i)− tBB

i (θ′i, θ
′′
−i) + tBB

i (θ′i, θ
′
−i) =

= δi(θ
′′
i , θ

′′
−i)− δi(θ

′′
i , θ

′
−i)− δi(θ

′
i, θ

′′
−i) + δi(θ

′
i, θ

′
−i). (29)
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If the following expression is positive, then ui(xi(θ̂i, θ̂−i), θi) has increasing differences
in (θ̂i, θ̂−i) for all θi,

Vi(xi(θ
′′
i , θ

′′
−i),θi) + Vi(xi(θ

′
i, θ

′
−i), θi)− Vi(xi(θ

′′
i , θ

′
−i),θi)− Vi(xi(θ

′
i, θ

′′
−i), θi)

+
∑

j 6=i

ρi

(
θ′′i θ

′′
j + θ′iθ

′
j − θ′′i θ

′
j − θ′iθ

′′
j

)
. (30)

The proof then follows similarly to that of Theorem 1. Q.E.D

Proof of Proposition 4: Since τi − Ti < γi/(n− 1), then ρi = −Ti implies ρi + τi <
γi/(n−1). By Theorem 2, (x, tBB) is supermodular implementable whenever ρi ≥ −Ti.
Because Vi ◦ xi(.) has complements bounded by τi, the definition of tBB

i implies that
ui ◦ f has complements bounded by ρi + τi. Theorem 4 completes the proof. Q.E.D

Proof of Proposition 5: Let O ⊃ Θ be some open set and define the exten-
sion of x(.) from Θ to O. For any θ ∈ O, let ι1(θ) = {j ∈ N : θj ∈ [θj, θj]},
ι2(θ) = {j ∈ N : θj < θj} and ι3(θ) = {j ∈ N : θj > θj}. The extension of x(.) from Θ

to O, denoted xe, is such that for all θ ∈ O, xe
(i,k)(θ) = x(i,k)((θj)ι1(θ), (θj)ι2(θ), (θj)ι3(θ))

for all k and i ∈ N . Note that xe
(i,k) ∈ Lp(O) and it is increasing in θ̂i because

x(i,k) is increasing in θ̂i. By Theorem 12.10 in [4], the space of C2-functions on O
is norm dense in Lp(O), hence there exists a sequence {xn} of C2-functions from O
into R such that limn→∞(

∫
O
|xn,(i,k) − xe

(i,k)|p)1/p = 0 for all k and i. This implies

limn→∞(
∫
Θ
|xn,(i,k)−x(i,k)|p)1/p = 0 for all k and all i. Moreover, we can take {xn} such

that xn,(i,k) is increasing in θi on Oi for all k and i.36 By definition, V and x are C2 if
there exist open sets Ui ⊃ Xi, i = 1, . . . , n, such that V : Ui×Oi → R and x :

∏
i∈N Oi →

Ui are C2. Therefore, since each Θi is compact and V and xn are C2, then they form a
continuous family, ∂Eθ−i

[Vi(xn,(i,k)(θ̂), θi)]/∂θi = Eθ−i
[∂Vi(xn,(i,k)(θ̂), θi)/∂θi] is increas-

ing in θ̂i on Θi and substitutes are bounded. Proposition 1 and Theorem 1 imply that,
for all n, there exist tSM

n such that f = (xn, t
SM
n ) is supermodular implementable.Q.E.D

Proof of Proposition 6: The proof begins with an approximation of the functions
h(i,k) : R2 → R and ri : Rn → R by C2-functions, and it studies the convergence of
the resulting composite function. Let µn denote the Lebesgue measure on Rn. Because
type sets are compact and hi is bounded, Theorem 12.10 in [4] guarantees the exis-
tence of a sequence of C2-functions that converges to h(i,k) in L1(µ

2)-norm. Since hi

is bounded, we can take that sequence so that each element is (uniformly) bounded.
From this sequence, Theorem 12.6 in [4] implies that we can extract a subsequence
{hm

(i,k)} of C2-functions that converges pointwise to h(i,k) for µ2-almost all (θi, ri). Now

consider function ri(.). By the Stone-Weierstrass theorem, for all i ∈ N there exists a
sequence of C2-increasing functions {rq

i } that uniformly converges to ri.
37 The triangle

36Since xi,k is increasing in θi, it is always possible to take the members of the approximating
sequence to be increasing (See Mas-Colell [35]).

37Since ri is increasing, recall that we can take the members of the approximating sequence to be
increasing.
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inequality gives

∫

Θ

|hm
(i,k)(θi, r

q
i (θ−i))−h(i,k)(θi, ri(θ−i))|dµn ≤

∫

Θ

|hm
(i,k)(θi, r

q
i (θ−i))−hm

(i,k)(θi, ri(θ−i))|dµn

+

∫

Θ

|hm
(i,k)(θi, ri(θ−i))− h(i,k)(θi, ri(θ−i))|dµn. (31)

The next step is to demonstrate that the second integral in the RHS of (31) converges
to zero, as a result of the µ2-a.e convergence of hm

(i,k).
38 Note that

∫

Θ

|hm
(i,k)(θi, ri(θ−i))−h(i,k)(θi, ri(θ−i))|dµn =

∫

Θi×ri(Θ−i)

|hm
(i,k)(θi, t)−h(i,k)(θi, t)|dµ×µri

(32)
where µri

= µn−1 ◦ r−1
i . One way to proceed is to apply the Radon-Nikodym theorem.

To this end, I show that µri
is absolutely continuous with respect to µ. By way of

contradiction, suppose that µ(A) = 0 for some set A and that there are countable
unions of intervals, ∪kI

k
j ⊂ R, such that ri(θ−i) ∈ A for all θ−i ∈

∏
j(∪kI

k
j ). Since

ri(.) is continuous and strictly increasing, ri(
∏

j(∪kI
k
j )) must contain some interval I,

in which case I ⊂ A and µ(A) > 0. This is a contradiction. Therefore, for any A
such that µ(A) = 0, there is no {∪kI

k
j } such that r−1

i (A) ⊂ ∏
j(∪kI

k
j ), which implies

µri
(A) = 0. As a result, µri

is absolutely continuous with respect to µ. Clearly, both
µri

and µ are (totally) finite on ri(Θ−i). By the Radon-Nikodym theorem, there exists
f on ri(Θ−i) such that µri

(A) =
∫

A
fdµ for every measurable set A ⊂ ri(Θ−i). From

(32), it gives
∫

Θ

|hm
(i,k)(θi, ri(θ−i))−h(i,k)(θi, ri(θ−i))|dµn =

∫

Θi×ri(Θ−i)

|hm
(i,k)(θi, t)−h(i,k)(θi, t)|f(t)dµ2.

(33)
Since |hm

(i,k)(θi, t)− h(i,k)(θi, t)|f(t) is integrable and dominated a.e by Hf(t) for H > 0

sufficiently large, the limit of the RHS of (33) as m → ∞ is given by the (integral
of the) limit of the integrand, and this limit is 0. This result allows to construct the
following subsequence from {hm

i (θi, r
q
i (θ−i))}:

1. For each m, take α(m) such that
∫
Θ
|hα(m)

(i,k) (θi, ri(θ−i)) − h(i,k)(θi, ri(θ−i))| dµn <

1/2m.

2. Since hα(m) is C2, h
α(m)
(i,k) (θi, r

q
i (θ−i)) converges uniformly to h

α(m)
i (θi, ri(θ−i)) as q →

∞; thus choose β(m) such that
∫
Θ
|hα(m)

i (θi, r
β(m)
i (θ−i)) − hi(θi, ri(θ−i))| dµn <

1/2m.

Along the subsequence so constructed, the LHS of (31) is less than 1/m for all m
and thus it converges to hi(., ri(.)) in L1-norm. In other words, there is a sequence
of dimensionally-reducible decision rules {xm

i } that converges to xi in L1-space. Im-
plementability of each xm follows from the fact that ∂Vi(xi, θi)/∂θi is increasing in xi

38This is indeed not immediate. Suppose limm→∞ hm
(i,k) = h(i,k) except for {(θi, r

∗
i ) : θi ∈ I}

where I is some interval. If ri(.) is constant and equal to r∗i , then limm→∞ hm
(i,k) = h(i,k) µ2-a.e, but∫

Θ
|hm

(i,k)(θi, ri(θ−i))− h(i,k)(θi, ri(θ−i))|dµn does not converge to 0.
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and xm
i (.) is increasing in θ̂i for each m. Hence xm(.) is implementable. Theorem 3

completes the proof. Q.E.D

Lemma 2 Let (X,≥) be a complete lattice. For Y ⊃ X, let φ : X →→ Y be a corre-
spondence whose range is Y and such that for all x ∈ X, x ∈ φ(x) and φ(x′)∩φ(x) = ∅
for all x′ 6= x. Then, there exists an extension ≥∗ of ≥ such that:

(i) (Y,≥∗) is a complete lattice,
(ii) For all distinct x, x′ ∈ X, and all y ∈ φ(x), y′ ∈ φ(x′), y ≥∗ y′ iff x ≥ x′,
(iii) For all x ∈ X, φ(x) is a complete chain.

Proof: Define ≥∗ on X as ≥. Then, for all distinct x, x′ ∈ X, and all y ∈ φ(x),
y′ ∈ φ(x′), let ≥∗ be such that y ≥∗ y′ iff x ≥ x′. So (ii) is satisfied. Finally, complete
the definition of ≥∗ by using the Well Ordering Principle of set theory. This result
implies that, for all x ∈ X, there exists º on φ(x) such that (φ(x),º) is a chain, and
such that any B ⊂ φ(x) has a least upper bound and a greatest lower bound in φ(x).39

Define ≥∗ to be equal to º on φ(x) for each x ∈ X. Therefore, for all x ∈ X, φ(x) is a
complete chain and (iii) is satisfied. I show next that (Y,≥∗) is a complete lattice with
the order ≥∗ just defined on all of Y .

First, I prove that it is a partially ordered set. For all x ∈ X, x ∈ φ(x) and thus
x ≥∗ x because (φ(x),≥∗) is a chain. This proves reflexivity. Now take y1, y2, y3 ∈ Y
such that y1 ≥∗ y2 and y2 ≥∗ y3. If y1 ∈ φ(x1), y2 ∈ φ(x2) and y3 ∈ φ(x3) where
x1, x2, x3 are distinct, then y1 ≥∗ y2 implies x1 > x2 and y2 ≥∗ y3 implies x2 > x3. By
transitivity of ≥, we have x1 > x3, which implies y1 ≥∗ y3. Suppose that y1, y2 ∈ φ(x1)
and y3 ∈ φ(x3) for distinct x1, x3 ∈ X. Since y2 ≥∗ y3, we have x1 > x3 which implies
y1 ≥∗ y3. If y1, y2, y3 ∈ φ(x1), then y1 ≥∗ y3 because (φ(x1),≥∗) is a chain, which shows
transitivity. Now, if y1 ≥∗ y2 and y2 ≥∗ y1 for some y1 ∈ φ(x1) and y2 ∈ φ(x2), then
x1 = x2. Therefore, y1, y2 ∈ φ(x1) and so y1 = y2 because (φ(x1),≥∗) is a chain. This
establishes antisymmetry.

Secondly, I prove that supY S and infY S exist, so (Y,≥∗) is a complete lattice. Let
X ⊂ X be the set of x’s whose image intersects S: x ∈ X iff S ∩ φ(x) 6= ∅. If |X | = 1,
then S ⊂ φ(x) where x is the unique element of X . By definition of ≥∗, S has an
infimum and a supremum in φ(x) ⊂ Y . Now assume |X | ≥ 2 and let S(x) = S ∩ φ(x)
for all x ∈ X . Note {S(x)}x∈X forms a partition of S. Define s(x) = supY S(x) and
s(x) = infY S(x), which exist and belong to φ(x) by definition of ≥∗. Note that if
supY S and infY S exist, then supY S = supY (∪X s(x)) and infY S = infY (∪X s(x)) by
associativity. Since (X,≥) is a complete lattice, supX X exists; call it x. If x ∈ X , then
s(x) = supY (∪X s(x)) and so supY S exists. So suppose x /∈ X . Define s∗ = infY φ(x)
and note s∗ ∈ φ(x). I show s∗ = supY (∪X s(x)). Since x /∈ X , x > x for all x ∈ X .
This implies s∗ ≥∗ s(x) for all x ∈ X . Hence s∗ is an upper bound for ∪X s(x). Take
any upper bound y 6= s∗ for ∪X s(x). Then y /∈ ∪X s(x), for if there were x′ ∈ X such
that y = s(x′) then x′ ≥ x for all x ∈ X would imply that x ≡ supX X = x′ is in X ,
a contradiction. Therefore, y ∈ φ(x̃) for some x̃ ∈ X\X and since y ≥∗ s(x) for all

39Take ω ∈ φ(x). By the Well Ordering Principle, there is an order that well orders φ(x)\{ω}.
Extend this order to all of φ(x) by setting ω as the greatest element. Let º be the extension. Since
(φ(x),º) is also well ordered, infφ(x)(S) exists for any S ⊂ φ(x). Since the set of upper bounds of S
contains ω, it has a least element because φ(x) is well ordered. Hence supφ(x)(S) exists.
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x ∈ X , x̃ > x for all x ∈ X . Hence x̃ ≥ x. If x̃ 6= x, then y >∗ s∗, and if x̃ = x, then
y ∈ φ(x) implies y ≥∗ s∗. As a result, s∗ = supY (∪X s(x)). Finally, infY S exists by a
similar argument. Since (X,≥) is a complete lattice, infX X exists; call it x. If x ∈ X ,
then infY (∪X s(x)) = s(x). Otherwise infY (∪X s(x)) = supY φ(x). Q.E.D

Proof of Theorem 5: By the traditional revelation principle, (Θ, f) truthfully imple-
ments f in Bayesian equilibrium with any order on Θi. It remains to prove that there
is an order ≥∗i on Θi such that the game induced by ({(Θ,≥∗i )}, f) is supermodular. I
prove first that, for any i ∈ N , the order ºi on Mi induces an order ≥∗i on Θi such that
(Θi,≥∗i ) is a (complete) lattice. So, Σi(Θi) is a (complete) lattice with the pointwise
order. Second, I establish that under ≥∗i , uf

i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.) and

has increasing differences in (θ̂i(.), θ̂−i(.)).
Denote M∗

i = m∗
i (Θi) for all i ∈ N . Define correspondence [ ] : M∗

i →→ Θi where
[mi] = {θi ∈ Θi : m∗

i (θi) = mi} is the equivalence class of mi ∈ M∗
i . Let θs : M∗

i → Θi

be a selection from [ ]. As a mapping from M∗
i to θs(M∗

i ), θs is a bijection because
mi 6= m′

i necessarily implies [mi] ∩ [m′
i] = ∅. Since θs is a bijection, we can define ≥i

on a subset of Θi such that θs(m′′
i ) ≥i θs(m′

i) if and only if m′′
i ºi m′

i. Because θs

is an order-isomorphism from (M∗
i ,ºi) to (θs(M∗

i ),≥i), it preserves all existing joins
and meets. This implies that (θs(M∗

i ),≥i) is a (complete) lattice because (M∗
i ,ºi) is a

(complete) lattice. Define the extension ≥∗i (or simply ≥∗) of ≥i to all of Θi, as follows:

1. For any distinct mi,m
′
i ∈ M∗

i and for all θi ∈ [mi], θ′i ∈ [m′
i], θi ≥∗ θ′i if and only

if θs(mi) ≥i θs(m′
i).

2. For all mi ∈ M∗
i , ([mi],≥∗) is a complete chain.

By Lemma 2, (Θi,≥∗) is a (complete) lattice. Thus, Σi(Θi) is a (complete) lattice with
the pointwise order. Endow those lattices with their order-interval topology and the
Borel σ-algebra so that all functions are trivially continuous and measurable.

The next step of the proof will use the fact that m∗
i (.) preserves meets and joins,

which I prove now. Take any T ⊂ Θi. Since (M∗
i ,ºi) and (Θi,≥∗) are complete lattices,

supM∗
i
(m∗

i (T )) and supΘi
T exist. Denote mT = supM∗

i
(m∗

i (T )). Since supΘi
T is an

upper bound for T , ≥∗ implies m∗
i (supΘi

T ) is an upper bound for m∗
i (T ) in M∗

i . Thus,
m∗

i (supΘi
T ) ºi mT . But mT is an upper bound for m∗

i (T ), hence sup[mT ]([mT ]) is an
upper bound for T . So, sup[mT ]([mT ]) ≥∗ supΘi

T , and therefore, mT ºi m∗
i (supΘi

T ).
A similar argument applies to show infM∗

i
(m∗

i (T )) = m∗
i (infΘi

T ).

Now I show that uf
i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.) and has increasing dif-

ferences in (θ̂i(.), θ̂−i(.)). Take any i ∈ N and for all j 6= i, endow Θj with ≥∗j and
Σj(Θj) with the corresponding pointwise order. Endow

∏
Σj(Θj) with the product

order. The first step is to show that uf
i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.). For any

θ′′i (.) and θ′i(.), we know m∗
i (θ

′
i(.)) ∨m∗

i (θ
′′
i (.)) = m∗

i (θ
′
i(.) ∨ θ′′i (.)) and similarly for ∧.

Since the mechanism ({(Mi,ºi)}, g) supermodularly implements f , ug
i (mi(.),m−i(.)) is

supermodular in mi(.) for each m−i(.). For any θ̂−i(.),

ug
i (m

∗
i (θ

′
i(.) ∨ θ′′i (.)),m

∗
−i(θ̂−i(.))) + ug

i (m
∗
i (θ

′
i(.) ∧ θ′′i (.)),m

∗
−i(θ̂−i(.)))

≥ ug
i (m

∗
i (θ

′
i(.)),m

∗
−i(θ̂−i(.))) + ug

i (m
∗
i (θ

′′
i (.)),m

∗
−i(θ̂−i(.))),
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which implies that for any θ̂−i(.),

uf
i (θ

′
i(.) ∨ θ′′i (.), θ̂−i(.)) + uf

i (θ
′
i(.) ∧ θ′′i (.), θ̂−i(.)) ≥ uf

i (θ
′
i(.), θ̂−i(.)) + uf

i (θ
′′
i (.), θ̂−i(.)).

The second step is to show that uf
i (θ̂i(.), θ̂−i(.)) has increasing differences in (θ̂i(.), θ̂−i(.)).

For any θ′′i (.) ≥∗i θ′i(.) and θ′′−i(.) ≥∗−i θ′−i(.), we know m∗
i (θ

′′
i (.)) ºi m∗

i (θ
′
i(.)) and

m∗
−i(θ

′′
−i(.)) º−i m∗

−i(θ
′
−i(.)). Since the mechanism ({(Mi,ºi)}, g) supermodularly im-

plements f , ug
i (mi(.),m−i(.)) has increasing differences in (mi(.),m−i(.)). For any θi,

ug
i (m

∗
i (θ

′′
i (.)),m

∗
−i(θ

′′
−i(.)))− ug

i (m
∗
i (θ

′
i(.)),m

∗
−i(θ

′′
−i(.))) ≥

≥ ug
i (m

∗
i (θ

′′
i (.)),m

∗
−i(θ

′
−i(.)))− ug

i (m
∗
i (θ

′
i(.)),m

∗
−i(θ

′
−i(.))),

which implies that for any θi,

uf
i (θ

′′
i (.), θ

′′
−i(.))− uf

i (θ
′
i(.), θ

′′
−i(.)) ≥ uf

i (θ
′′
i (.), θ

′
−i(.))− uf

i (θ
′′
i (.), θ

′
−i(.)),

and it completes the proof. Q.E.D
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