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1 Introduction

Conventional economic analyses of the allocation of resources among var-
ious productive uses and the distribution of the product generated from
those uses take as given the existence of well-defined and costlessly enforced
property rights. The emerging literature on conflict and predation, however,
shows that allowing for the possibility of conflict in economic interactions
can have profound implications for the distribution of resources.1 But, that
literature seems somewhat incomplete in that it abstracts from the possibil-
ity that alliances form.2

This paper develops a positive analysis of alliance formation. The anal-
ysis is based on a simple economic model that features a “winner-take-all”
contest for control of some resource—for example, territory. Without the for-
mation of alliances, each individual exerts some effort to secure the resource,
which in turn is applied to the production of a homogeneous consumption
good. By contrast, when an alliance forms, members pool their efforts in
that contest. If successful, the members in turn apply the resource to a joint
production process.

Moving beyond the traditional theory of alliances that follows the pi-
oneering work of Olson and Zeckhauser (1966),3 the present analysis does
not take the membership of alliances as given. Nor is there any presumption
that peace prevails among members of an alliance. Rather, the distribution
of the output from joint production is subject to another, separate conflict—
that is, between the members of the alliance. The analysis shows that, just
as the possible emergence of conflict between individuals in their economic
interactions can have important implications for the equilibrium distribu-
tion of resources and income, the possibility of conflict between individuals
within an alliance should not be ignored.4

1See, for example, Hirshleifer (1991, 1995), Skaperdas (1992) and Grossman and Kim
(1995). Garfinkel and Skaperdas (2000) provide a brief overview.

2Two notable exceptions—Skaperdas (1998) and Noh (2002)—are discussed below.
3For a survey of this literature, including applied work, see Sandler and Hartley (2001).
4The literature on collective rent seeking—see, for example, Nitzan (1991)—similarly

considers settings in which there are two levels of conflict: that which emerges between
groups and that which emerges within a group. But, most of the analyses in this literature
effectively treat the two levels of conflict as one. For given each group’s pre-determined
sharing rule, each member’s contribution to his respective group’s effort in the inter-group
conflict jointly determines the outcome of both that conflict and the intra-group conflict.
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Nevertheless, borrowing from this traditional theory, one might naturally
look to the public-good nature of defense and appropriative efforts to explain
the emergence of alliances—for example, the cost-saving advantages realized
when neighboring nations take defensive measures against a common enemy
[Sandler (1999)].5 Skaperdas (1998) and Noh (2002) show in different though
related settings that a conflict technology having this sort of property is, in
fact, critical for the emergence of an alliance.

The analysis of the present paper suggests, however, that such a tech-
nology might not even be necessary. A potential benefit of the formation
of alliances, captured in neither Skaperdas (1998) nor Noh (2002), derives
from the presence of the free-rider problem. Specifically, the incentive for
each member of the alliance to contribute to the group’s collective effort in
securing the contestable resource is reduced by the alliance’s size, since the
benefit possibly realized would have to be shared with the other members,
whereas the cost is borne privately by the individual member.6 Hence, the
conflict directly over the contestable resource is reduced. Of course, a new
conflict arises with the formation of alliances, and as already suggested ad-
ditional resources must be expended by each member of the winning alliance
to secure her share of the alliance’s product. Nonetheless, relative to the
case of individual conflict, the formation of alliances tends to reduce the
overall severity of conflict.7

By contrast, the present analysis treats the resolution of the conflict within the alliance
as distinct from that between alliances, and more importantly assumes no mechanism by
which members of an alliance can commit to a sharing rule. [Katz and Tokatlidu (1996)
and Wärneryd (1998) have a similar structure.]

5Also see Sandler (1993) who surveys the previous literature on the public-good nature
of an alliance’s defense. Alesina and Spolaore (2000) recently consider the importance
of international conflict in the equilibrium determination of the size and number of the
nation-states, suggesting in their concluding remarks that the nation-state might be in-
terpreted as an alliance. However, like the traditional theory of alliances, they presume
that peace prevails among members of the nation-state.

6In Skaperdas (1998), the outcome of each conflict is determined by the parties’ relative
strategic endowments, which are given exogenously. In Noh (2002), the free-rider problem
does not arise, simply because the cost of each member’s contribution to the alliance’s
collective effort is borne by the entire alliance. For that part of the individual’s inalienable
endowment which is not used in the collective effort to secure the contestable resource is
used in joint production. The alliance’s output, in turn, is distributed equally to the
members—i.e., according to the ex ante optimally chosen sharing rule.

7Wärneryd (1998) first suggested such an effect in his explanation of the emergence of
a federalist structure of jurisdictional interaction. The analysis of the present paper goes
beyond this novel idea towards the endogenous determination of the number and size of

2



An application of the theory of endogenous coalition structures—in the
spirit of, for example, Bloch (1996), Chwe (1994), Ray and Vohra (1997,
1999), and Yi (1997)—shows that this negative net effect on the severity of
conflict alone generally is sufficient to support the formation of alliances in a
noncooperative equilibrium. Now, when the the total number of individuals
is very small, there is virtually no room to diffuse the inter-alliance conflict,
whereby the structure can be made incentive compatible. However, when
the number of individuals involved is sufficiently large, there exists at least
one stable multi-member alliance structure, and beyond that multiple config-
urations are possible. In such cases, while the expected gains under alliance
formation summed across all individuals might be larger when alliances are
not of the same size as has been suggested by Katz and Tokatlidu (1996),
they need not be. The overriding determinant, given the total number of
individuals involved, is instead the number of alliances.8 Specifically, the
analysis finds that the expected gains from alliance formation in the aggre-
gate relative to individual conflict are greater when the number of alliances
is larger and the alliances are smaller in size.9

In what follows, the next section presents the model of conflict which al-
lows for the formation of multi-member alliances. Section 3 establishes the
benchmark case of individual conflict. Then, treating the pre-conflict deter-
mination of the structure of alliances as given, section 4 characterizes the
allocation of resources and payoffs generally and, in the case of a symmet-
ric alliance structure, illustrates the benefit of alliance formation to reduce
the severity of conflict. Section 5 then studies the endogenous formation of
alliances, characterizing stable alliance structures and their welfare implica-
tions. Finally, section 6 offers some concluding remarks, including a brief
discussion of possible extensions of the analysis.

the alliances in conflict.
8To be sure, Katz and Tokatlidu (1996) take the number of groups (2) as given, and

study the implications of asymmetric group size.
9By contrast, Baik and Lee (2001), who similarly study the endogenous determination

of the number and sizes of groups, tend to predict the emergence of just one alliance. As
discussed below, the difference in these predictions can be attributed, in large part, to
the fact that, in their analysis, like that of Noh (2002), the “prize” from the inter-alliance
contest is distributed to alliance members according to a pre-committed rule. While
clouding the distinction between the inter-alliance conflict and the intra-alliance conflict,
this distribution mechanism presumes an element of cooperation within the alliance.
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2 Analytical framework

Consider an environment populated by N identical, risk-neutral individuals,
I = {1, 2, . . . , N}, who participate in a three-stage game. In the first stage,
agents i ∈ I form alliances. An alliance is defined as any subset of the
population, Ak ⊆ I, with membership nk ≥ 1, where k = 1, 2, . . . , A and A

denotes the total number of alliances. For future reference, let the alliance
structure be indicated by S = {n1, n2, . . . , nA}, with the alliances ordered
such that n1 ≥ n2 ≥ n3 · · · ≥ nA. By definition, all individuals belong to
an alliance. However, an alliance need not include more than one mem-
ber. Moreover, this framework admits the possibility that everyone comes
together to form a single alliance—the grand alliance: A1 = {1, 2, . . . , N}.

2.1 Stage 2: conflict between alliances

In the second stage, all individuals participate in a winner-take-all con-
flict/contest over a resource X, which is necessary for the production of a
homogeneous consumption good in the third stage. They participate either
collectively with others or alone, as dictated by the alliance structure deter-
mined in stage one. For any given configuration of alliances, each member
i ∈ Ak chooses how much she will contribute to the alliance’s appropriative
effort, mi.10 The probability that alliance k wins the conflict and success-
fully secures the entire resource X is determined by

µk =

∑
i∈Ak

mi∑A
j=1

∑
i∈Aj

mi

(1)

if
∑A

j=1

∑
i∈Aj

mi > 0; otherwise, µk = 1/A for all k.11

By assumption here, members of any alliance k with nk > 1 have no
special advantage over those individuals who choose to participate in the

10Since production is not possible until the resource is secured, the cost of this effort,
as specified below, can be interpreted as foregone leisure.

11This specification, first introduced by Tullock (1980) for individual rent seeking, is
the contest success function most commonly used in the conflict/contest, rent-seeking lit-
erature. As argued below, although it admits the possibility of a corner solution for all
members of all alliances, such a solution is not a possible equilibrium outcome. See Hirsh-
leifer (1989) who discusses the properties of this specification and related ones. Note that,
under the maintained assumption of risk-neutrality, an alliance’s probability of winning
and taking the entire prize X, µk, may be interpreted alternatively as its resource share.
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conflict on their own.12 Nevertheless, this formulation captures one aspect
of the public-good nature of defense spending. In particular, appropriative
efforts by different members of a given alliance are perfect substitutes for
one another. Regardless of who provides any additional effort, all members
enjoy the increased probability of securing the resource X it implies.

2.2 Stage 3: joint production and conflict within the alliance

To fix ideas suppose that alliance k, with nk > 1, successfully captures the
resource X. Individuals not belonging to that alliance, i ∈ Ak′ where k′ 6= k,
receive nothing, implying that their second-stage efforts result only in a loss,
uik′ = −mi, over the three stages.

Turning to the members i of the winning alliance k, each i ∈ Ak is
identically endowed with a unit of labor, which she allocates to productive
activities, li, and appropriative or security related activities, si, subject to

1 = li + si. (2)

These activities along with X, in turn, deliver goods for consumption at
the end of the stage. Specifically, individuals i ∈ Ak collectively combine
the resource X with a fraction of their labor endowment, li = 1 − si in a
joint (linear) production process to yield a homogeneous consumption good.
Generally, for nk ≥ 1 using (2), the alliance’s total product, Yk, is specified
as—

Yk =
∑

i∈Ak
[1− si]X/nk. (3)

Although X might be considered a public good from the perspective of the
second-stage (winner-take-all) conflict, at this stage X would be interpreted
as a purely private good.13

12To allow for such effects, Skaperdas (1998) modifies (1) as follows:

µk =
(
∑

i∈Ak
mi)

γ

∑A
j (

∑
i∈Aj

mi)γ
.

With N = 3, he finds that a stable alliance between two of the three agents is possible only
when γ > 1 (i.e., under super-additivity). Noh (2002) obtains a similar result assuming a
slightly different specification to capture the advantage that multi-member alliances have
in conflict.

13Specifying production as a joint process is common in the economics literature on
conflict. [See, for example, the survey by Garfinkel and Skaperdas (2000).] Allowing for
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For nk > 1, each member must also devote a strictly positive effort,
si > 0, towards securing a share of the final product. This latter activity,
reflecting the conflict that emerges within the winning alliance, detracts
from production. Assume that the share of final output, Yk, enjoyed by
agent i ∈ Ak, σik, depends on her security effort si, distinct from mi, and
on the effort by everyone else in her alliance, sj for j 6= i ∈ Ak. More
formally, for nk ≥ 1,

σik =
si∑

j∈Ak
sj

(4)

if
∑

j∈Ak
sj > 0; otherwise σik = 1/nk for all i ∈ Ak. Each member i ∈ Ak,

then, obtains a payoff given by uik = σikYk − mi. Whether her alliance
secures the resource or not, each individual alone bears the cost of the con-
tribution she makes to her alliance’s effort in the second-stage conflict. Even
if there were no conflict within the winning alliance so that si = 0 for all
i ∈ Ak and σik = 1/nk, the free-rider problem would be relevant.

But, the analysis does not assume that “peace” prevails among the al-
liance members. That is, while involved in a joint production process in the
third stage, individuals must worry about the eventual distribution of the
alliance’s product. Following Grossman (2001), one can think of the mem-
bers’ security or guarding efforts which determine this distribution, si, as
a process by which effective property rights are created and output jointly
produced is shared. That some additional resources are required by each in-
dividual to secure a share of the final output makes alliances less appealing.
Indeed, in supposing that some effort is required in the production process
and in securing a share of the final output, the analysis of the third stage of
this model captures the fundamental trade-off between production and ap-
propriation highlighted in Haavelmo (1954, pp. 91-98) and considered more
recently in, for example, Hirshleifer, (1988), Garfinkel (1990), Skaperdas
(1992), and Grossman and Kim (1995).14

complementarities or increasing returns in production would provide another potential
benefit of group formation. However, given the linear homogeneity of the technology as
specified here, one need not suppose that there is any sort of interaction between alliance
members in production. An alternative interpretation of the production technology (3) is
that each member of the winning alliance takes an equal share of X at the beginning of
the third stage and produces in isolation of the others. In this case, the share σik, defined
below in (4), would represent the fraction of her own product that member i defends and
that which she captures from the other members of her alliance k.

14That such a trade-off does not emerge in the second stage might appear to be im-
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3 Individual conflict

Before moving on to the analysis of the equilibrium allocation of resources
given the alliance structure, consider the case of individual conflict. Specifi-
cally, suppose that each alliance has only one member: A = N and S = S̄ ≡
{1, . . . , 1}. In this case with conflict over X only, each individual i (or al-
liance k) chooses mi to maximize her expected payoff, equal to her expected
consumption in the third stage net of the cost of her effort in securing the
contestable resource in the second stage, or ue

i = µiX−mi, subject to (1).15

Assume everyone makes this choice simultaneously.
The specification for the contest success function (1) generally implies

that, if no appropriative effort were made by anyone, then any individual
could capture the contestable resource with near certainty by putting forth
an infinitesimally small amount of effort. Since no one would leave such an
opportunity unexploited, the “peaceful” outcome where mi = 0 for all i ∈ I
cannot be an equilibrium. Thus, each individual’s optimizing choice of mi

satisfies the first-order condition, [M −mi]X = M2, where M =
∑

j∈I mj ,
implying the unique, symmetric Nash equilibrium:

m̄ ≡ m(1, S̄) = (N − 1)X/N2 (5a)

ūe ≡ ue(1, S̄) = X/N2 > 0 (5b)

for i ∈ I. As shown in (5b), each individual’s expected payoff is strictly pos-
itive, increasing in the amount of the contested resource, X, but decreasing
in the total number of people competing for that resource, N . We will refer
back to this outcome later as it provides a benchmark against which the
gains of multi-member alliance formation can be measured.

portant for the central results of the analysis. What is important here, however, is that
individuals do not fully internalize the benefits of their efforts in fighting over X relative
to the costs they incur. In particular, the findings of this analysis would follow if it were
alternatively based on a framework that is more in line with the collective rent-seeking
literature such as that in Noh (2002), provided that individuals also valued leisure. By
the same token, the qualitative results would remain the same if the analysis were based
on a model in which there was no production in the third stage, as in Katz and Tokatlidu
(1996) and Wärneryd (1998).

15This cost is expressed in the equivalent units of expected consumption. Since nk = 1,
equation (4) implies, independent of the rest of the alliance structure, that si = s̄(1) = 0
and σik = 1. Then, equation (3) implies that σikYk = X.
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4 The allocation of resources and expected payoffs given the
alliance structure

Treating the pre-conflict determination of the alliance structure S as given,
the analysis now considers the allocation of resources in the second and third
stages. Each individual aims to maximize her expected payoff which equals,
as in the case of individual conflict, her expected consumption in the third
stage net of the cost of her effort in securing the contestable resource in
the second stage expressed in the equivalent units of expected consumption:
ue

ik = µkσikYk −mi. In this dynamic setting, the amount of resources avail-
able to anyone in the third stage will, of course, depend on second-stage
choices. All individuals, when making their second-stage choices, will take
this influence into account. In accordance with the equilibrium notion of
subgame perfection, then, we solve the model backwards, starting with the
third and final stage.

4.1 The outcome of the intra-alliance conflict

Given the outcome of the second-stage conflict over X and mi, equations
(3) and (4) imply that the payoff to each member i of the winning alliance
k, uik = σikYk −mi, can be written as

uik =
si∑

j∈Ak
sj

[∑
j∈Ak

(1− sj)
X

nk

]
−mi. (6)

Each individual i ∈ Ak chooses si to maximize this expression. Assume that
alliance members make their third-stage choices simultaneously.

The conflict technology shown in (4) precludes the “peaceful” outcome
where si = 0 for all i ∈ Ak and nk > 1.16 As such, the following condition
must be satisfied at an optimum:

∑
j 6=i∈Ak

sj∑
j∈Ak

sj

[∑
j∈Ak

(1− sj)
]
≥ si, (7)

with strict equality for si < 1. Not surprisingly given the symmetry of
the alliance’s membership, this condition implies that members choose the

16The reasoning here is analogous to that sketched above with respect to the conflict
technology shown in (1) [see section 3].
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same labor allocation, si = s and, at the same time, an interior optimum:
si ∈ (0, 1) for all i ∈ Ak.17 Using equations (3), (4) and (6), condition (7) as
a strict equality implies the following Nash equilibrium of the third stage:

si = (nk − 1)/nk, (8a)

uik = X/n2
k −mi (8b)

for all i ∈ Ak. In this equilibrium, each member of the winning alliance
enjoys an equal share of final output: σik = 1/nk, which is decreasing in
the size of the alliance.18 But, given mi, because a larger nk implies a
greater dilution of the prize X and a greater diversion of effort away from
production towards security, the payoff is decreasing in the square of the
size of the alliance.

4.2 The outcome of the inter-alliance conflict

Now consider the second-stage conflict between alliances, again with the
alliance structure fixed. Each individual i belonging to alliance k chooses
mi to maximize the expected value of (8b), given by

ue
ik = µkX/n2

k −mi, (9)

subject to the conflict technology, µk, as specified in (1). Individuals in all
A alliances make their decisions simultaneously. In (9), the first term repre-
sents the product enjoyed by member i of alliance k, having won the conflict,
weighted by the winning probability, µk. The second term represents the
utility cost of fighting over the contestable resource expressed in equivalent
units of expected consumption; it is borne solely by the individual regardless
of the outcome of that conflict.

Although the specification for the conflict technology (1) implies that∑A
j=1

∑
i∈Aj

mi > 0, a fully interior solution is not guaranteed for all con-
figurations of alliances when A > 2. That is to say, the members of one or
more alliances might choose mi = 0. But, the stability of a given configura-

17Note, in particular, that if si = 1 held for some i, then it would have to hold for all
i ∈ Ak. But then the alliance’s total output (Yk) and thus the left hand side of (7) would
be equal to zero, yielding a self-contradiction.

18Of course, as indicated earlier, the specification for the conflict resolution technology
(4) implies that for i ∈ Ak, where nk = 1, si = s̄ = 0.
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tion does require that all alliances actively participate in the second-stage
conflict.19 In anticipation of our subsequent focus on stable alliances and
in the interest of brevity, the analysis to follow considers only such solu-
tions. Accordingly, the individual’s choice in the second-stage satisfies the
following equality: ∑

i/∈Ak
mi

[
∑A

j=1

∑
i∈Aj

mi]2

[
X

n2
k

]
= 1. (10)

Maintaining focus on the case of within-alliance symmetry (i.e., when mi

equals a constant mj for all i ∈ Aj j = 1, 2, . . . , A), the condition shown in
(10) implies

M − nkmk

M2

[
X

n2
k

]
= 1, (11)

where M ≡ ∑A
j=1 njmj .20 With this condition, one can find the equilibrium

effort put forth by each individual belonging to alliance k of size nk, given
the alliance structure, S:

m(nk, S) = [F − (A− 1)n2
k]

(A− 1)X
nkF 2

, (12)

where F ≡ ∑A
j=1 n2

j for all k.21

In the case where all alliances are of equal size n ≥ 1, S ≡ Ŝ =
{n, . . . , n},22 the solution shown in (12) simplifies to m̂ ≡ m(n, Ŝ) = (N −
n)X/N2n2. Under individual conflict where S = Ŝ = S̄, this solution sim-
plifies even further to m̄ ≡ m(1, S̄) shown in (5a). By contrast, when the
grand alliance forms n = N , m(n, Ŝ) = 0. As can easily be confirmed, un-
der alternative symmetric structures given N(= An), 1 ≤ n ≤ N , m(n, Ŝ)
is decreasing in n or equivalently increasing in A.

19See Lemma 2 in Appendix A.1.
20Note, however, since the probability of winning X depends on

∑
i∈Ak

mi, not just
mi, only total effort by the group is uniquely determined; individual effort, mi, is not.
Although the focus here on the symmetric outcome may make the emergence of alliances
more likely, this focus seems most natural given the assumption that individual members
of the alliance are identical.

21Specifically, rewrite (11) as X(M − nkmk) = M2n2
k, and sum over all alliances, k =

1, 2, . . . , A to obtain AXM − XM = M2 ∑A
j=1 n2

j . Simplifying and rearranging shows

that, in equilibrium, M = X(A − 1)/F , which with (11) yields (12). From this solution,
it follows that mk > 0 for all k provided that F > (A− 1)n2

k holds for nk = n1.
22Ignoring integer problems in this symmetric case, A = N/n and F = nN .
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For any given alliance structure with mk > 0 for all k, the solution for
m(nk, S) reveals more generally that the equilibrium effort by the individual
members of alliance k in the inter-alliance conflict is decreasing in the size
of the alliance, nk, as is the total effort by the alliance, nkm(nk, S). Not
surprisingly, then, the expected probability of winning the conflict in stage
2, given by µk = [F − (A − 1)n2

k]/F for A > 1, is also decreasing in the
alliance size, nk.

Using this expression for µk, (9), and (12), the payoff expected by each
individual member of alliance k at the end of stage one, ue(nk, S), can be
written as

ue(nk, S) = [F − (A− 1)n2
k][F − (A− 1)nk]

X

n2
kF

2
(13)

for k = 1, 2, . . . , A, where as previously defined, F ≡ ∑A
j=1 n2

j and S =
{n1, n2 . . . , nA}.

Not surprisingly then, given any alliance structure where mk > 0 for
k = 1, 2, . . . , A, individuals belonging to larger alliances expect a smaller
payoff than the payoff expected by those belonging to smaller alliances:

ue(n1, S) ≤ ue(n2, S) ≤ · · · ≤ ue(nA, S) (14)

where by assumption n1 ≥ n2 ≥ . . . ≥ nA. Of course, this ranking says
nothing about an individual’s incentive to move from one alliance to another,
as it does not account for the effect of the hypothetical move on the efforts
levels m by anyone in the stage-two conflict or others’ incentive to move in
response. Such incentives are considered more carefully in the analysis of
the stable formation of alliances below.

4.3 Expected gains from symmetric alliance formation

Before proceeding to that analysis, this subsection illustrates the gains
that individuals could expect under a symmetric, multi-member alliance

structure—i.e., where nk = n > 1 for all k: Ŝ ≡ {n, . . . , n}. Using the
expression for an individual’s expected payoff given in (13), the expected
gains under such an alliance structure relative to the outcome of individual
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conflict can be written as

Ge(n) ≡ ue(n, Ŝ)− ue(1, S̄) =
[(N − n)(n− 1)]X

N2n2
(15)

for n > 1, where as previously defined S̄ ≡ {1, . . . , 1}.23 Some straightfor-
ward calculations based on this expression reveal the following:

Proposition 1 Under a symmetric alliance structure, with nk = n > 1 ∀
k = 1, 2, . . . , A, the gains expected by each individual, Ge(n), are

(a) strictly positive for n < N ,

(b) decreasing in n, and

(c) equal to 0 for n = N .

The potential for greater expected payoffs suggests that the cost-saving ad-
vantage to appropriative/defense activities by an alliance, which has been
highlighted in the literature, might not be essential to the formation of
multi-member alliances. In the context of this simple model, the expected
gains come in the form of a reduction in the severity of conflict over the
contestable resource X for 1 < n < N . No member of an alliance with
n > 1 fully internalizes the benefits of her efforts in that conflict and so
naturally devotes less effort to it. In the symmetric outcome, everyone else
is doing just the same, so that the net effect on the winning probabilities in
the conflict over X relative to the case of individual conflict is zero. Thus, as
Proposition 1 indicates, there are potential gains under symmetric alliance
formation, with n < N .

The proposition also suggests, however, that the expected gains are lim-
ited. That is, though positive, the expected gains fall as n rises above 1.
As n increases and the second-stage conflict between alliances weakens, the
third-stage conflict over the distribution of the product within the alliance
intensifies; from an ex ante perspective, the increased costs associated with
the intensifying intra-alliance conflict exceed the decreased costs associated
with the weakening inter-alliance conflict. As n approaches N , the expected
gains from alliance formation go to zero. Of course, the actual outcome

23This function is also defined for n = 1: Ge(1) = 0. From (13) under the assumption
that nk = n for all k, one can find ue(n, S) = [N(n− 1) + n]X/N2n2 . Similarly, ue(1, S̄)
can be derived from (13) assuming nk = 1 for all k, which is equivalent to the expected
payoff that was derived earlier in section 3, ūe

1 = X/N2 [see equation (5b)].
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under alliance formation with n = N will differ from that under individual
conflict by virtue of the difference in the nature of the conflict in the two
outcomes. But, by assumption, the alliance has no means by which its mem-
bers can resolve conflict without resorting to arms (s); therefore, shifting the
entire conflict from one level over X to another over Y has no consequences
in terms of expected payoffs.24 Still, for n < N , Ge(n) > 0 holds, so that the
formation of symmetric alliances on net enhances expected welfare. As the
next section shows, the expected gain arising from the free-rider problem
alone is often sufficient to predict the emergence of alliances in equilibrium.

5 Endogenous alliance formation

Having characterized the allocation of resources in the second and third
stages of the game given the alliance structure, consider now the first stage
of the game—namely, the formation of alliances in equilibrium. In par-
ticular, defining an equilibrium of the first stage as an outcome where no
individual can possibly increase her expected payoff, the analysis endoge-
nizes the alliance structure, S. When the number of individuals involved in
the second stage conflict, N , is very small, it is possible that only individual
conflict emerges in equilibrium. If, however, N is sufficiently large, multiple
configurations of stable alliances could emerge in equilibrium.

5.1 Stability and equilibrium

To be sure, in the absence of any specific benefits from belonging to an
alliance (i.e., in terms of the conflict or production technologies), there is a
strong incentive, given S, for each individual to break away from her own
alliance to form a stand-alone alliance. The logic here is quite simple. As
discussed earlier, each member’s incentive to contribute to her own alliance’s
collective effort in the second-stage conflict is decreasing in the size of her
alliance. Hence, once having broken away from her alliance to form a stand-
alone alliance, given the membership of all other alliances and that of her

24If the members of an alliance could credibly agree to share the product equally without
arming (s = 0), the expected payoff under symmetric alliance formation, given in this case
by ue(n, S) = [N(n− 1) + n]X/N2n, would be increasing in n, so that the expected gains
under alliance formation, Ge(n) = (n − 1)X/Nn, would also be increasing in n and be
strictly positive when evaluated at n = N .
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former alliance, any individual would have an increased incentive to put
forth some effort in the conflict over X. At the same time, this deviation
would likely decrease the effort made by members of alliances not directly
affected by the deviation. By forming a stand-alone alliance, the individual
could, then, put herself in a very advantageous position to win the conflict
over X and all for herself.

But, suppose that such a deviation must itself be stable or robust to
further deviations, which must be stable, and so on. Here the analysis fol-
lows the noncooperative theory of endogenous coalition structures which in
general imposes certain internal consistency requirements on possible devi-
ations.25 More specifically, for the purposes of this analysis, we formulate
the following definition of an equilibrium:

Definition 1 An alliance structure, S = {n1, n2, . . . , nA}, is a Nash equi-

librium structure if (i) the payoff expected by each individual under that

structure is at least as large as that under individual conflict and strictly

larger for at least one individual, and (ii) any deviation from that structure

by an individual eventually makes that individual worse off.

Given this definition, the evaluation of the potential gains from a given de-
viation must factor in the possibility of all subsequent deviations by others
and the resulting impact on expected payoffs. In envisioning individuals as
looking at the ultimate outcome of a deviation, the equilibrium refinement
employed here is most closely related to Chwe’s (1994) notion of farsighted

stability. In the context of this model, although any individual would bene-
fit, for example, by leaving her alliance to form a stand-alone alliance given
the membership of the other alliances and her former alliance, such de-
viations could ultimately trigger a reversion to individual conflict, leaving
everyone, including the original deviator, worse off. Accordingly, such devi-
ations themselves would be deemed unprofitable and, thus, would not pose
a threat to the stability of the alliance structure under consideration.26 In

25See, for example, Bloch (1996), Chwe (1994), Ray and Vohra (1997,1999), and Yi
(1997).

26Of course, without having specified the dynamics that would take us from a potential
deviation to the outcome involving individual conflict, invoking the notion of farsighted
stability here might seem ad hoc at best. However, the analysis in connection with Lemmas
1 and 2 in Appendix A.1 is suggestive. Moreover, this stability notion has much theoretical
appeal in its emphasis on internal consistency and on the importance of the eventual
outcome over the immediate outcome. On these points, see Ray and Vohra (1997, 1999).
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effect, invoking the notion of farsighted stability expands the opportuni-
ties for “cooperation” among individuals who would behave otherwise in a
noncooperative way.

For an open membership game where no consent is required to join an
already existing alliance, one must also verify that no individual has an
incentive to leave her alliance to join another. From the discussion above,
it should be clear that no individual would have an incentive to leave her
alliance to join an equal sized or larger alliance [see section 4.2]. However,
there may be an incentive to join a smaller alliance. In fact, when the size
of the largest alliance exceeds the smallest by 2 or more, each member of
the largest alliance, k = 1, has an incentive, holding the rest of the alliance
structure (including her own former alliance k = 1) fixed, to join one of the
smaller alliances. So that no such incentive exists, an equilibrium alliance
structure must be such that the largest alliance have, at most, one more
member than any other alliance: n1 ≤ nj + 1 for any j = 2, . . . , A.27

5.2 Equilibrium alliance structures

Based on the above discussion, the following characterizes multi-member
alliance formation in equilibrium:

Proposition 2 Fix the number of individuals, N , involved in the conflict

over the contestable resource X.

(a) Suppose N can be decomposed into the product of two integers, A∗ > 1
and n∗ > 1. Then the symmetric multi-member alliance structure with

A∗ alliances each having n∗ members, Ŝ∗ = {n∗, . . . , n∗, }, is farsighted

stable and a Nash equilibrium structure.

(b) Given N , choose any A∗ ∈ (1, N) and define a ≡ N − A∗n∗ where

a ∈ [1, A∗). The asymmetric multi-member alliance structure, with

a alliances having n∗ + 1 members and A∗ − a alliances having n∗

members, S∗ = {n∗+1, . . . , n∗+1, n∗ . . . , n∗}, is farsighted stable and

a Nash equilibrium structure provided n∗ satisfies the inequality

[F − (A∗ − 1)(n∗ + 1)2][F − (A∗ − 1)(n∗ + 1)]
(n∗ + 1)2F 2

>
1

(A∗n∗ + a)2

27See Lemma 3 in Appendix A.1.
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and, in the case that a = 1, an additional inequality

(A∗n∗2 −A∗n∗ + 1)/(A∗n∗2 + 1)2n∗2 < 1/(A∗n∗ + 1)2,

where F = a(n∗ + 1)2 + (A∗ − a)n∗2.

Proof. See Appendix A.2

Part (a) of the proposition establishes that, with the exception of the grand
alliance, all symmetric, multi-member alliance structures are stable.28 Hence,
the expected gains from the free-rider problem identified above are sufficient
to support the formation of multi-member alliances. Part (b) shows, how-
ever, that stability is not unique to symmetric alliance structures. Under
asymmetric alliance structures, although the expected gains are unevenly
distributed, everyone must be at least as well off as they would be un-
der individual conflict. This requirement, along with the requirement that
n1 ≤ nj + 1 for any j = 2, . . . , A, is embedded in the first inequality of the
proposition. The inequality ensures further that, for a = 2, . . . , A∗−1 given
N , a deviation by one individual originally belonging to a size–n+1 group to
form a stand-alone group would give at least one other individual the incen-
tive to do the same, thereby inducing a reversion to individual conflict and
making the original deviation unprofitable to all. Thus, the first inequality
alone is a sufficient condition for the farsighted stability of alliances with
a ∈ (1, A). Matters may differ, however, for alliances with a = 1. Neverthe-
less, the second inequality serves to rule out the profitability of individual
deviations when a = 1.29

Given A∗ and for all a, the first equality imposes a lower bound on n.
This lower bound on n limits the degree of asymmetry between the size–n
groups and the size–n+1 groups so as not to give too much of an advantage
to the members of the smaller (size–n) groups in the contest for control of
X. For example, when n = 3 the advantage enjoyed by the smaller groups

28The failure of the grand alliance to emerge as an equilibrium structure is not un-
common in settings where there are positive externalities, especially when N is large [Yi
(1997), Yi and Shin (2000)]. The logic is essentially the same here, only more severe
because there is no possibility of conflict management within the alliance. Allowing for
more peaceful exchange or interaction within the winning alliance, however, would imply
Ge(N) > 0, thereby making the grand alliance a possible outcome, though not necessarily
an efficient one. [See Garfinkel (2004).]

29See Appendix A.2 for more details.
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over the larger groups (n + 1 = 4) is relatively more mild than when n = 2
(and n + 1 = 3). Furthermore, increasing the number of larger sized groups
(n+1) relative to the number of the smaller sized groups (n) (or equivalently
when a is larger given A) means that members of the size–n + 1 groups are
put at a relatively smaller disadvantage. Thus, the lower bound on n can
be less severe for larger a. 30

To illustrate these tendencies, Tables 1 and 2 show the stable multi-
member alliance structure based on Proposition 2, by the equilibrium num-
ber of alliances, A∗.31 These tables show that, given N and A∗, there need
not exist any integer n > 1 that satisfies the inequality in the proposition.
In fact, for N < 4, N = 5 and 7, no stable multi-member alliance structure
exists. However, as N increases, the conditions for stability, ruling out in-
dividual deviations only, weaken considerably. As shown in Table 1, there
exists at least one stable multi-member alliance structure for any N ≥ 8,
having A∗ = 2 alliances: for any even number N ≥ 8, both alliances have
n∗ = N/2 members; and, for any odd number N > 8, one alliance has
n∗ = (N − 1)/2 members and the other has just one additional member,
n∗ + 1 = (N + 1)/2. Yet, as clearly shown in Table 2, other alliance struc-
tures are also possible. In general, for any given A∗ > 2, alliance structures
with fewer size–n+1 alliances (or smaller a) are more likely to be farsighted
stable when N is larger.32

With the multiplicity of possible structures, one might naturally wonder
how they would be ranked among the participants.33 For N < 9, where

30The second inequality shown in Proposition 2 similarly imposes a lower bound on n,
precisely when the constraint imposed by the first inequality is most binding (i.e., when
a = 1). Thus, it might not seem too surprising that, in this setting, the second inequality
is implied by the first. However, that is not a general result. The second inequality (given
a = 1) does becomes increasingly relevant over and above the first one once one allows for
more peaceful exchange within alliances [see Garfinkel (2004)].

31The minimum values of N , or equivalently the minimum values of n given A and
a ∈ [1, A), for which a stable multi-member alliance structure exists were calculated using
Mathematica.

32Though not shown here, one can verify that, for all N ≥ 15, there exists yet another
alliance structure: for even N > 15, there is one stable structure with A∗ = N/2 alliances,
each having 2 members; and, for odd N ≥ 15, there exists one stable structure with
A∗ = (N + 1)/2 alliances, the first a = A∗ − 1 each having 2 members and the last
one having just one member. This is the least concentrated alliance structure that can
possibly emerge in equilibrium. For any structure with two or more alliances having just
one member cannot be stable [see Appendix A.1].

33One could apply the equilibrium refinement introduced by Bernheim, Peleg and Whin-
ston (1987), accounting for deviations of groups of individuals as well as for individual
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there are multiple equilibrium structures, they are all symmetric. Hence,
from Proposition 1, it is clear that everyone would prefer the structure hav-
ing the greatest number of alliances, A∗ = N/n∗ or equivalently the smallest
number of alliance members, n∗ > 1. In the case where both asymmetric
and symmetric alliances are possible, the ranking is not so obvious. Table
3 reports the expected payoffs per individual in each alliance, under the
alternative equilibrium alliance structures listed in Table 2, for N ≥ 9. It
also reports aggregate expected payoffs under each of those structures and
under individual conflict. First, the table confirms that, under asymmetric
alliance structures, the benefits of alliance formation relative to individ-
ual conflict are distributed asymmetrically.34 When more than one stable
multi-member alliance structure exists for a given N , the payoffs expected
by members of the size–n alliances increase unambiguously as we move to
another asymmetric alliance structure with a larger number of alliances, A∗.
The same cannot be said for members of size–n+1 alliances. While in some
cases their expected payoffs increase as well, sometimes they fall but never
below what would be expected under individual conflict. Furthermore, as
we move from an asymmetric alliance structure to a symmetric one with a
greater number of alliances (A), the payoffs expected by each member of
a size–n alliance fall while those expected by each member of a size–n + 1
alliance rise. Nonetheless, note that regardless of whether the alliance is
symmetric or asymmetric, aggregate expected payoffs are unambiguously
rising in the number of alliances (A) for any given N .35

These implications would appear to contrast sharply with those of Baik
and Lee’s equilibrium analysis (2001) of strategic group formation with in-

deviations, and thereby sharpen the predictions of the analysis in terms of the number
of alliances and the size of alliances given N . But, there need not be any equilibrium at
all. [For an example see Yi and Shin (2000).] In any case, such an analysis is beyond the
scope of the present paper.

34Observe from both Tables 2 and 3, consistent with the previous discussion, that for any
given A∗ and a, expected payoffs are more evenly distributed for larger N . Furthermore,
given N , they tend to be more evenly distributed when the number of size–n+1 alliances
(a) is larger relative to A∗.

35A close examination of the table suggests that the benefits of group-size asymmetry,
as identified by Katz and Tokatlidu (1996), can be realized only by increasing the number
of groups. That is to say, group-size asymmetry is not the sole source of the benefit. In
fact, Katz and Tokatlidu who fix the number of groups to 2 find that, the rate of rent
dissipation is non-monotonic in group size asymmetry. Hence, if one group is sufficiently
larger than the other, then increasing that group’s membership any further has a negative
effect on aggregate expected payoffs.
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dividual rent-seeking. In that analysis, individuals win or lose the contest
on their own; if they win, they either share their prize with other members
of the group or receive an extra payoff from them. The particular sharing
rule is chosen by the groups’ members before the conflict. When more than
two (multi-member) strategic groups form in which case the groups must be
of a similar size as in the present analysis, within-group optimality dictates
that the winner take the entire prize for himself and a bonus from the other
members of his alliance. In this case, though better off as a member of a
group, everyone is worse off than they would be under individual conflict,
and overall welfare is decreasing in the number of strategic groups. Such out-
comes, however, are dominated by the one where just one (multi-member)
strategic group forms and all other individuals participate in the conflict on
their own.36 Within-group optimality requires, in this case, that the winner
shares his prize with the other members of his group, such that the free-rider
problem comes into play, as in the present analysis, to reduce the overall
level of conflict. Hence, more in line with the predictions of the present
analysis, strategic group formation enhances everyone’s expected payoffs.
That the equilibrium structure in this case looks very different from that in
the present analysis can be attributed to Baik and Lee’s assumption that
members within a group can somehow commit to a sharing rule—that is, to
allow for some form of cooperation.37

6 Concluding remarks

This paper has investigated the formation of stable alliances under rather
restrictive conditions. One central finding is that increasing returns in nei-
ther the conflict technology nor the production technology is essential for
the stability of alliances. Furthermore, there need not be any possibility for
peaceful exchange or interactions within the alliance. Instead, the effect of

36Note that, when N ≤ 5, the grand coalition can emerge in equilibrium, in which
case the social waste associated with the conflict is entirely eliminated. For N > 5, the
equilibrium size of the group is the smallest integer greater than N/2.

37Also see the recent analysis of Bloch, Sánchez-Pageés and Soubeyran (2002), who find
that the grand alliance emerges as the unique equilibrium of a sequential group formation
game. The strong tendency of grand alliance to emerge in equilibrium there, despite the
presence of positive externalities as in the present analysis, appears to be driven, in large
part, by the assumption that members of the alliance share the “prize” equally. That is
to say, the analysis abstracts from the difficulties of intra-alliance conflict.
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alliances to reduce the degree of conflict over the contestable resource alone
could be sufficient to support their stability in equilibrium.

This is not to say that these other factors related to the technology of
conflict and production are irrelevant. Indeed, the analysis of this paper has
deliberately abstracted from many of the features of alliances that might
help to explain their emergence in more “civilized” settings. The central ob-
jective here was to study their formation in the most primitive environment
possible. Natural extensions of the present analysis, left for future research,
then, would be to consider these features.

Consider, for example, the process by which members within a group re-
solve a given sort of conflict. It would seem reasonable to suppose, contrary
to the assumption of this paper, that the survival of groups over time re-
quires the creation and maintenance of “norms” and institutions that would
allow the alliance members to effect a more “peaceful” distribution of out-
put at a lower cost. More specifically, within the context of this model,
the distribution of output should not depend entirely on force or security
measures taken by the groups’ members to guard against one another. In a
modest extension of the present analysis, Garfinkel (2004) incorporates the
possibility of conflict management, allowing for varying degrees of “coopera-
tion” within alliances.38 Given the number of individuals in competition for
the contestable resource, when mechanisms of conflict management are rel-
atively more important in determining the distribution of the group’s joint
product, a greater variety of group structures are possible in equilibrium.
When such mechanisms are sufficiently effective in conflict resolution, larger
groups are more likely to emerge in equilibrium relative to what has been
suggested in the present analysis. However, provided that some within-group
conflict remains despite whatever mechanisms of conflict management are
in place, larger groups need not be better. That is to say, the grand alliance
generally is not the efficient outcome.

A related extension would involve relaxing the assumption that indi-
viduals are ex ante identical. While heterogeneity within the population
(in terms of technologies and preferences) would seem more reasonable in
an analysis of group formation, most analyses assume ex ante symmetry.
Indeed, Skaperdas (1998) and Noh (2002) show just how complex the prob-

38Genicot and Skaperdas (2002) go somewhat deeper, modelling conflict management
as an investment decision in a dynamic setting.
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lem quickly becomes in the case of only three individuals having different
endowments. In the present analysis, without ex ante symmetry, it is no
longer possible to characterize an alliance structure by the number and size
of alliances alone. Nevertheless, such an extension seems worth pursuing,
as the heterogeneity of individuals raises some important and interesting is-
sues about the composition of alliances and about resolving conflicts therein,
provided that a stable structure exists at all.

Another interesting extension focuses on the technology of conflict. In
abstracting from any sort of technological advantage that may exist for those
who join forces in an alliance [e.g., super-additivity, as in Skaperdas (1998)],
the analysis has emphasized the positive externalities of their formation.
Specifically, in the context of the present framework, when a new alliance
forms or merges with another, those belonging to the new (larger) alliance
have a smaller incentive to compete for the contestable resource, implying
that everyone else enjoys an higher likelihood of success in the contest and
thus a higher expected payoff. As a result, conflict over the contestable
resource falls.39 A conflict technology exhibiting increasing returns and
negative externalities could yield very different implications.40 In particular,
the effect of increasing returns on the incentive of individuals to contribute
to the collective effort could swamp the effects of the free-rider problem as
the size of the alliance rises, in which case group formation might aggravate
the conflict.

Appendix

A.1. Preliminary results for stability and equilibrium

Lemma 1 Given an alliance structure with two or more stand-alone alliances S =
{n1, . . . , nA−2, 1, 1}, members i ∈ Ak, where nk > 1, optimally choose not to

participate in the second-stage conflict: m(nk, S) = 0.

Proof. By hypothesis, nA−1 = nA = 1, implying that F =
∑A−2

k=1 n2
k + 2. Even

if all of the other (multi-member) alliances were of the same size, such that F

would be equal to the largest possible value of F = (A − 2)n2
1 + 2, the inequality,

F − (A − 1)n2
1 < 0, would hold, implying by (12) m(n1, S) = 0. Now, consider

39Of course, the new hypothetical alliance structure need not be stable.
40See Yi (1997) for a useful discussion of endogenous coalition formation games with

positive and negative externalities.
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alliance k = 2’s decision to participate. Since alliance k = 1 is not active in the
conflict over X, F =

∑A−2
k=2 n2

k + 2.. As before, even when F is equal to the largest
possible value, F ′ = (A− 3)n2

2 + 2, the inequality, F ′ − (A− 2)n2
2 < 0, would hold,

implying m(n2, S) = 0. With repeated applications of this logic, given S, one can
show sequentially that the remaining alliances k ≥ 3 for which nk ≥ 2 have no
incentive to participate in the conflict over X.

Lemma 2 Stability of any given alliance structure, S = {n1, n2, . . . , nA}, requires

mk > 0, for k = 1, 2, . . . , A.

Proof. Suppose there exists an alliance structure, S′, in which the members i of one
group k have no incentive to participate in the conflict, m(nk, S′) = 0. By (12), this
group must be k = 1. Each member i ∈ A1 obtains a payoff of just zero. Yet, given
the membership of all other groups, any i ∈ A1 could secure a higher expected
payoff by competing for X on her own. Suppose that just one member i ∈ A1

breaks away, yielding the new partition S′′ = S′ r {n1}
⋃{n1 − 1, 1}.41 Hence, the

original structure could not have been stable. Assuming that this deviation does
not affect the participation decision of the remaining members of alliance k = 1
(m(n1 − 1, S′′) = 0), the new structure is not stable either.42 Here, there are two
cases to consider:

Case 1. nk = 1, for k ≤ A. If before the initial deviation, there had been one
or more stand-alone groups, by Lemma 1, that deviation would in turn push all
individuals remaining in a multi-member alliance (k for nk > 1) out of the conflict
m(nk, S′′) = 0.

Case 2. nA > 1. Each of the remaining members of alliance k = 1 could obtain a
higher payoff by competing for the contestable resource on her own as before. But
then, from Lemma 1, a move by any one of them would result in another structure,
S′′′, such that anyone remaining in a multi-member alliance (k for nk > 1) would
pull out of the conflict m(nk, S′′′) = 0.

In either case, all those individuals i ∈ Ak with nk > 1 and thus ue(nk, S) = 0
would have an incentive to deviate from the existing structure of alliances, S′′ in
case 1 and S′′′ in case 2. In the very least, each could leave her alliance to form
a stand-alone alliance and, regardless of others’ choices, expect a positive payoff
equal to ue(1, S̃) = X/Ñ2 where S̃ consists of Ñ ≤ N singletons and N − Ñ ≥ 0

41Under S′′ assuming that all other alliances, k ≥ 2, remain active in the stage-two
conflict, F ′′ =

∑A
k=2 n2

k + 1. Then, from (13), ue(1, S′′) = [F ′′ − (A− 1)]2X/F ′′2 > 0.
42Members of even smaller groups k ≥ 2 might pull out of the conflict for an expected

payoff of zero as well. That would not change the basic logic of the argument to follow.
If instead m(n1 − 1, S′′) > 0, the new structure S′′ would be stable and the proof would
be complete.
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individuals belonging to one or more multi-member alliances. Given a zero payoff
from non-participation, the incentive for any individual to move from her current
multi-member group to form another single-member alliance would remain strictly
positive.43

Lemma 3 When the size of the largest alliance exceeds the smallest by 2 or more,

any member of the largest has an incentive to join one of the smaller alliances,

holding the rest of the alliance structure (including the remainder of the largest

alliance) fixed: ue(n1, S) < ue(nj + 1, S′), where n1 > nj + 1 and S′ = S r
{n1, nj}

⋃{n1 − 1, nj + 1}.
Proof. Using (13), we need only verify that the following inequality holds:

X[F − (A− 1)n2
1][F − (A− 1)n1]

n2
1F

2
<

X[F ′ − (A− 1)(nj + 1)2][F ′ − (A− 1)(nj + 1)]
(nj + 1)2F ′2 (A.1)

for n1 > nj + 1, where F = n2
1 + n2

j + B, F ′ = (n1 − 1)2 + (nj + 1)2 + B and
B =

∑
k 6=1,j n2

k. Assume that, under both alliance structures, mk > 0 for all k.44

Some tedious algebra shows that the inequality above will be satisfied if and only
if the following condition is satisfied:

[(nj + 1)2F
′2 − n2

1F
2][(F − (A− 1)n2

1)(F − (A− 1)n1)] <

n2
1F

2
[
[F ′ − (A− 1)(nj + 1)2][F ′ − (A− 1)(nj + 1)]−
[F − (A− 1)n2

1][F − (A− 1)n1]
]
. (A.2)

Note that if n1 = nj + 1, then F = F ′ and the two sides of the expression are
identical and equal to 0. However, the assumption that n1 > nj + 1 implies F =
F ′ + 2(n1 − nj − 1) > F ′, making the left hand side of (A.2) negative. Thus, a
sufficient condition for (A.1) to hold for n1 > nj + 1 is that the right hand side of
(A.2) be positive. More tedious algebra shows that the right hand side of (A.2) is
positive for n1 > nj + 1 if and only if,

n2
1F

2(n1 − nj − 1)
[
(A− 3)[F − (A− 1)n2

1]+

[(A− 1)(n1 + nj) + (A− 3)][F ′ − (A− 1)(nj + 1)]
]

> 0. (A.3)

When A ≥ 3, the inequality clearly holds. When A = 2, there are just two alliances
and the term B vanishes from F and F ′. In this case, more tedious algebra shows

43Given the focus on individual deviations in the analysis of equilibrium, it seems rea-
sonable to conjecture a tendency towards individual conflict.

44Thus, F > (A− 1)n2
k and F ′ > (A− 1)n2

k for all k.
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that the expression above simplifies as follows:

n2
1(n

2
1 + n2

j )
2(n1 − nj − 1)

[
(n1 + nj − 1)[(n1 − 1)2 + n2

j ] + nj(n1 − 1)
]
, (A.4)

which is clearly positive. Therefore, in equilibrium, the difference in the sizes of
any two alliances cannot be greater than 1; it must be 0 or 1.

A.2. Proof of proposition 2

Part a: symmetric alliances. By Proposition 1, the expected payoffs under Ŝ∗

for A∗ > 1 and n∗ ≥ 2 are strictly greater than those under individual conflict,
S̄. Hence, any deviation that triggered a reversion to individual conflict would be
considered unprofitable relative to Ŝ∗. Now suppose an individual were to leave her
alliance to form a stand-alone alliance. Then there would be A∗+1 alliances: A∗−1
alliances of size n∗, the deviator’s former alliance of size n∗ − 1, and the deviator’s
new single-member alliance. As one can verify using (12), given the membership
of the deviator’s former alliance (n∗− 1 ≥ 1), such a deviation from the symmetric
structure would push the members of the other original A∗ − 1 alliances to the
corner m = 0, implying a reversion to individual conflict by Lemma 2. Finally,
since alliances are all of the same size and n∗ ≥ 2 under Ŝ∗, no individual would
have an incentive to leave her alliance to join another [Lemma 3].

Part b: asymmetric alliances. By construction, under S∗ each alliance is of size n or
n + 1, such that no individual has an incentive to join another alliance [Lemma 3].
The inequality ensures, in addition, that the expected payoff under that structure
for any member belonging to a size–n+1 alliance is greater than that under individ-
ual conflict. Then, by (14), members of all alliances would consider any deviation
which triggered a reversion to individual conflict to be unprofitable relative to S∗.
Thus, to verify that no individual (belonging to an n + 1-member group) would
have an incentive to form a group on her own, it is only necessary to show that
the payoffs expected by another under that hypothetical deviation are less than
that under individual conflict. For a = 2, . . . , A∗ − 1 given N , such a deviation
would result in a new partition with A + 1 groups: A∗ − a + 1 groups with n∗

members, a−1 groups with n+1 members and 1 stand-alone group, implying that
F − A(n + 1)2 = −(A − a)(1 + 2n) − 2n < 0. Thus, from (12), this individual
deviation would push the members of the remaining a− 1 groups with n + 1 mem-
bers to the corner (m = 0) for a zero payoff. By the reasoning of Lemma 2, such
a deviation would trigger a reversion to individual conflict, and would therefore be
deemed unprofitable. For a = 1, when an individual from the single group of size
n+1 forms a group on her own, a new structure, again with A+1 groups, emerges:
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A groups of size n and one stand-alone group. In this case, such a deviation would
not push anyone away from an interior optimum. However, as long as the second
inequality shown in the proposition holds, everyone but the original deviator would
be worse off than if there were no groups at all. Then, by the reasoning applied
earlier, the initial deviation would induce a reversion to individual conflict, mak-
ing everyone including the original deviator worse off relative to the initial alliance
structure under consideration.
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Table 1. Equilibrium alliance structures

Number of a A∗ − a min n∗
Alliances

A∗ = 2 for N = 2n ≥ 4 0 2 2
for N = 2n + 1 ≥ 9 1 1 4

A∗ = 3 for N = 3n ≥ 6 0 3 2
for N = 3n + 1 ≥ 16 1 2 5
for N = 3n + 2 ≥ 11 2 1 3

A∗ = 4 for N = 4n ≥ 8 0 4 2
for N = 4n + 1 ≥ 29 1 3 7
for N = 4n + 2 ≥ 22 2 2 5
for N = 4n + 3 ≥ 11 3 1 2

A∗ = 5 for N = 5n ≥ 10 0 5 2
for N = 5n + 1 ≥ 46 1 4 9
for N = 5n + 2 ≥ 37 2 3 7
for N = 5n + 3 ≥ 23 3 2 4
for N = 5n + 4 ≥ 14 4 1 2

A∗ = 6 for N = 6n ≥ 12 0 6 2
for N = 6n + 1 ≥ 67 1 5 11
for N = 6n + 2 ≥ 56 2 4 9
for N = 6n + 3 ≥ 39 3 3 6
for N = 6n + 4 ≥ 28 4 2 4
for N = 6n + 5 ≥ 17 5 1 2

A∗ = 7 for N = 7n ≥ 14 0 7 2
for N = 7n + 1 ≥ 92 1 6 13
for N = 7n + 2 ≥ 79 2 5 11
for N = 7n + 3 ≥ 66 3 4 9
for N = 7n + 4 ≥ 46 4 3 6
for N = 7n + 5 ≥ 33 5 2 4
for N = 7n + 6 ≥ 20 6 1 2

A∗ = 8 for N = 8n ≥ 16 0 8 2
for N = 8n + 1 ≥ 121 1 7 15
for N = 8n + 2 ≥ 106 2 6 13
for N = 8n + 3 ≥ 91 3 5 11
for N = 8n + 4 ≥ 68 4 4 9
for N = 8n + 5 ≥ 53 5 3 6
for N = 8n + 6 ≥ 38 6 2 4
for N = 8n + 7 ≥ 15 7 1 1

Notes: a denotes the number of alliances with n∗+1 members; A∗−a denotes
the remaining number of alliances with n∗ members. N denotes the total
number of individual competing for X.
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Table 3. Expected payoffs under alternative equilibrium structures

N A: 2 3 4 5 6 7 8 N

9 n 3.44 2.88 1.23
n + 1 1.37 2.88 · · · · · 1.23

N 20.61 25.93 11.11

10 n 1.80 3.00 1.00
n + 1 1.80 · · 3.00 · · · 1.00

N 18.00 30.00 10.00

11 n 2.17 5.32 12.36 0.83
n + 1 1.03 1.10 1.02 · · · · 0.83

N 16.99 24.80 33.87 9.09

12 n 1.27 1.74 2.08 2.43 0.69
n + 1 1.27 1.74 2.08 · 2.43 · · 0.69

N 15.28 20.83 25.00 29.17 8.33

13 n 1.49 0.59
n + 1 0.79 · · · · · · 0.59

N 14.48 7.69

14 n 0.95 2.83 12.00 2.04 0.51
n + 1 0.95 0.82 · 0.78 · 2.04 · 0.51

N 13.27 19.55 33.33 28.57 7.14

15 n 1.08 1.16 4.92 1.63 57.55 0.44
n + 1 0.63 1.16 0.78 1.63 · · 0.45 0.44

N 12.63 17.33 24.12 24.44 63.80 6.67

16 n 0.73 1.48 1.27 1.76 0.39
n + 1 0.73 0.39 1.27 · · · 1.76 0.39

N 11.72 17.13 20.31 28.13 6.25

17 n 0.82 1.74 11.78 0.35
n + 1 0.51 0.63 · · 0.63 · · 0.35

N 11.20 16.22 32.99 5.88

18 n 0.58 0.82 1.34 0.31
n + 1 0.58 0.82 · · 1.34 · · 0.31

N 10.49 14.81 24.07 5.56

19 n 0.65 1.01 2.56 4.71 0.28
n + 1 0.42 0.34 0.59 0.60 · · · 0.28

N 10.06 14.56 19.07 23.74 5.26

See the notes at the bottom of the table which is continued on the next page.
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Table 3. Expected payoffs . . . continued

N A: 2 3 4 5 6 7 8 N

20 n 0.47 1.17 0.85 1.00 11.62 0.25
n + 1 0.47 0.49 0.85 1.00 · 0.53 · 0.25

N 9.50 13.89 17.00 20.00 32.76 5.00

21 n 0.52 0.62 1.13 0.23
n + 1 0.36 0.62 · · · 1.13 · 0.23

N 9.14 12.93 23.81 4.76

22 n 0.39 0.74 1.35 0.21
n + 1 0.39 0.30 0.27 · · · · 0.21

N 8.68 12.68 16.78 4.55

23 n 0.43 0.84 1.55 2.14 4.57 11.51 0.19
n + 1 0.30 0.39 0.45 0.21 0.49 · 0.46 0.19

N 8.37 12.17 15.86 20.28 23.50 32.59 4.35

24 n 0.33 0.48 0.61 2.42 0.82 0.98 0.17
n + 1 0.33 0.48 0.61 0.46 0.82 · 0.98 0.17

N 7.99 11.46 14.58 18.79 19.79 23.61 4.17

25 n 0.36 0.56 0.67 0.16
n + 1 0.26 0.25 · 0.67 · · · 0.16

N 7.72 11.23 16.80 4.00

26 n 0.28 0.63 0.91 0.15
n + 1 0.28 0.32 0.24 · · · · 0.15

N 7.40 10.83 14.26 3.85

27 n 0.31 0.38 1.03 4.47 0.14
n + 1 0.23 0.38 0.36 · · 0.41 · 0.14

N 7.16 10.29 13.62 23.33 3.70

28 n 0.25 0.44 0.46 1.28 0.70 0.13
n + 1 0.25 0.22 0.46 0.21 · 0.70 · 0.13

N 6.89 10.08 12.76 16.58 19.64 3.57

29 n 0.26 0.49 0.56 1.44 2.32 0.12
n + 1 0.20 0.27 0.12 0.35 0.37 · · 0.12

N 6.68 9.76 12.70 15.66 18.62 3.45
Notes: The first 7 columns (A = 2−8) report the expected payoffs under the equilibrium
multi-member alliance structures reported in Table 2. The last column (A = N) reports
the analogous expected payoffs under individual conflict. The entries for n and n + 1
report the payoffs expected by each member of groups having respectively n and n + 1
members. For symmetric groups, the same payoff is indicated for both groups. The
entry for N reports the expected payoffs summed over all individuals. [The individual
payoffs might not sum to the aggregate payoffs due to rounding.] These calculations
assume that X = 100.

31


