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Abstract

This paper provides Bayesian rationalizations for White’s heteroskedastic

consistent (HC) covariance estimator and various modifications of it. An informed

Bayesian bootstrap provides the statistical framework.

1. Introduction

Often researchers find it useful to recast frequentist procedures in Bayesian terms, so as to

get a clearer understanding of how and when the procedures work. This paper takes this approach

with respect to the consistent, in the face of  heteroskedasticity of unknown form, covariance matrix

estimator proposed by White (1980) for the case of stochastic regressors, building on the fixed

regressor analysis of Eicker (1963, 1967), and the misspecified maximum likelihood analysis of

Huber (1967).

2. Preliminaries

This section  reviews a Bayesian conjugate analysis of a multinomial sampling distribution.

Let z denote a discrete random variable belonging to one of J categories indexed (j = 1, 2, ..., J) with

associated probabilities Prob(z = j*2) = 2j (j = 1, 2, ..., J), where  and 1J

denotes the unit simplex in UJ. n independent draws  on  z  imply the multinomial

likelihood function

(1)
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1 Note:  and 

where Nj = nj, the number of zj (i = 1, 2, ..., n) equal to j (j = 1, 2, ..., J), are sufficient statistics for

2. The natural conjugate prior for 2 is the Dirichlet distribution  with density

given  (j = 1, 2, ..., J) and 1 Without loss of generality assume the first m

categories have Nj = nj  >  0. It follows from Bayes’ Theorem that the posterior distribution of 2 is

the Dirichlet distribution   where   (j = 1, 2, ..., m), and 

(j = m+1, m+2, ..., J). The marginal mass function of z is the multinomial-Dirichlet mass function

The predictive mass function for a new observation zN+1 is

Sampling from a Dirichlet distribution can be accomplished by simulating J independent

gamma random variables  with means/variances  (j = 1, 2, ..., J) and unit scale

parameters, i.e., with densities 

and then forming

(2)

(3)

(4)

(5)

(6)
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2Chamberlain and Imbens (2003, p. 12) note that because J can be arbitrarily large and our
data are measured with finite precision, the finite support assumption is arguably not restrictive.

3Chamberlain and Imbens (2003, p. 13) discuss how this approach can be extended to the
overidentified case in which the number of moment conditions exceeds the dimension of $.

The resulting 2j constitutes one draw from the Dirichlet distribution  When  the draw

2 is from the prior density ; when < = ,  the draw 2 is from the posterior density .

3. Bayesian Bootstrap

Interpret the multinomial categories of z as J distinct values taken by a (K+1)×1 vector z =

[ y, xN]N, where y is scalar and x is K×1.2  In other words, the J categories are reinterpreted as the

support points for the joint distribution of z, i.e., z = j is reinterpreted as z = zj where zj = [yj, xjN]N.

Suppose  m  of the J support points for z are observed in a sample of size n $ m and  others are not

observed. Denote the m observed points by  where y(1)  is m×1 and  X(1) is m×K,

and denote the  unobserved support points by  where  is ×1 and  is

×K. Note that Nj = 0 (j = m + 1, m + 2, ..., m + ). Similarly, partition 2, g, , and  into m and 

components corresponding to z(1) and    

and  The standard case corresponds to data that are distinct and exhaust the

support: J = n = m, N1 = N2 = ... = NJ = 1,  = 0, and z(2) is null. See Chamberlain and Imbens

(2003), Hahn (1977), Lancaster (2003; 2004, Section 3.4), and Ragusa (2007). The general case is

any non-standard case.

The Bayesian bootstrap of Rubin (1981) begins by selecting a parameter/functional of

interest, say, $ = $(2). For example, in the context of a linear model, suppose interest focuses on the

moment condition Ez*2[x(y - xN$)] = 0K.3 Then $ = $(2) are the coefficients associated with the linear

projection of  y on  x: $ = [Ez*2 (xNx)]-1 Ez*2 (xNy), where 

           (xNx) ,        (7)

(xNy) ,        (8)

with X = [X(1)N, X(2)N]N, y = [y(1)N, y(2)N]N, and diag{@} denotes a diagonal matrix with diagonal
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4Since the denominator in (6) is common across j, Lancaster (2003) notes that $ also has
the WLS representation  This leads to a slightly different
approximation than discussed in the text.

5Gilstein and Learner (1983) characterize the set of WLS estimates as the union of the
bounded convex polytopes formed by the hyperplanes on which residuals are zero.

elements equal to the given argument. $ has the weighted least squares (WLS) representation 4,5

Note that the “parameter” $ depends on both z(1) = [y(1), X(1)`] and z(2) = [y(2), X(2)`], as well as 2. 

The prior and posterior distributions for 2 in Section 2 induce prior and posterior

distributions for $ via (9), albeit not particularly tractable, because $ is a nonlinear function of the

2. The limiting (as )  “noninformative” improper prior together with the standard case (  =

0 and z(2) null) have received most of the attention. This is unfortunate. Because the number of

hyperparameters in  is J, which is greater than or equal to the sample size n, an informative prior

is warranted. Unfortunately, this necessitates eliciting a large number of prior hyperpararmeters.

This paper introduces an informative prior for 2 with two properties: all elements in  are

positive implying prior density (2) is proper, and unobserved support points (fictitious observations)

 (together with ) are introduced to reflect prior beliefs about $. The resulting

combination is defined to be an informed Bayesian bootstrap.

The multinomial probabilities 2 are not the parameters of interest. The functional $(2) is the

focus of attention. Choosing , so that the implied prior for $ is sensible, is a challenging task. An

obvious reference case is the symmetric prior where all elements in  are the same. Then 2j (j = 1,

2, ..., J) are identically distributed, and the prior and posterior for $ are centered over b = (XNX)-

1XNy.

For example, consider the standard case and symmetric prior in which 2j (j = 1, 2, ..., J) are

identically distributed with 

Then E(2j) = J-1 (j = 1, 2, ..., J), regardless of c, and Var(2j) = (J - 1)[[J2(Jc + 1)]-1 which is decreasing

in c. As c 6 4, the elements of 2j (j = 1, 2, ..., J) become degenerate random variables equal to J-1.

(9)

(10)
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Because  the posterior mean of 2 is the same as the prior mean J-1,

however, the posterior variance Var(2j) = (J - 1)[[J 2 (J{c+1} + 1)]-1 is smaller than the prior variance.

In other words, the hyperparameter c only affects the prior and posterior dispersions. Setting c =

.005 corresponds to a fairly diffuse proper prior, whereas, the uniform case c = 1 corresponds to a

fairly tight prior. Jeffreys’ prior corresponds to c = .50.

Note the standard case assumption in the preceding example is important for the posterior

analysis. Suppose only m of the possible J support points are observed. Let 

Then , where  and  In this case, the posterior mean of 2

consists of two different subvectors  and 

 In other words, the symmetry of the prior does not carry over to the posterior.

Heterogeneous priors are introduced in Section 6.

4. HC Estimation

Lancaster (2003) showed the equivalence to order J!1 of the covariance matrix of the

bootstrap distribution of the OLS and the Eicker/White/Huber  heteroskedasticity robust covariance

matrix estimate. Furthermore, he showed that the covariance matrices of the Efron (1979) bootstrap

and the Bayesian bootstrap of Rubin (1981) are identical to O(J!1).

Lancaster uses a limiting (as ) “noninformative” improper prior in the standard case

(  = 0 and z(2) is null). Extending Lancaster (2003) to the general case in which  > 0 and z(2) is

non-null, this paper approximates the posterior distribution of $ = $(2) in (9) by taking a Taylor

series expansion around the posterior mean  where  is a J×1 vector of ones.

This leads to the approximation

(11)
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where ej is a J×1 vector with the jth element equal to unity and all other elements equal to zero, Q( )

= X(XNdiag{ }X) -1,  and  

The posterior  implies that the exact posterior mean and variance of (11) are

Since the first-order condition for WLS implies (XNdiag{ }X) -1 XNdiag{ }u( ) = 0K, and because

it follows that (14a)  simplifies to

where  To the extent that  in (11) is a good

approximation to $(2) in (9), (13) and (14b) should be good  approximations to the posterior mean

and variance of $.

To add some transparency to (14b), consider symmetric prior (10) and the standard case.

Then, the posterior mean is ,  and (14b) simplifies to

where V HC0 is the White/Eicker robust covariance matrix 

(12)

(13)

(14a)

(15)

(14b)

(16)

(17)
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 and   As c 6 0 (Lancaster’s case), V HC 6

[J/(J+1)]V HC0.  Therefore, the noninformative symmetric prior provides a Bayesian justification for

using the OLS estimate b together with V HC0 in approximate Bayesian inference for $.

5. Choice of 

 (j = 1, 2) play similar roles in defining $ = $(2) in (9) and transforming

prior beliefs about 2 into prior beliefs about $. Approximate the prior distribution of $(2) by taking

a Taylor series expansion around the prior mean  Then analogous to (13), the

prior mean of $ can be approximated by

One goal in choosing  may be to locate (18) at an a priori likely value.  For

example, suppose  = n and once again consider symmetric prior (10). Then all the diagonal

matrices in (18) cancel. Often an interesting prior for public consumption centers all the slopes in

(18) over zero. Choose the first column of equal to  the remaining columns of   equal

to the corresponding columns of , and . Then .

Next consider approximate posterior mean (13). Because

(13) has the representation

(18)

(19)

(20)

(21)
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6See Chesher and Jewitt(1987), Cribari-Neto et al. (2000), Cribari-Neto and Zarkos (1999,
2001), Godfrey (2006), and MacKinnon and White (1985).

which is a matrix-weighted average of approximate prior mean (18) and the WLS estimate based

on the observed  :

These fictitious observations enter approximate prior mean (18) and posterior mean (21)

through the K(K+1)/2 unique elements in , and the K×1 location vector

 [or ]. The actual (K+1) elements in  are not required to compute

the approximation (18) or (21). This is no more onerous than the customary linear regression case.

6. Choice of 

Symmetric prior (10) centers on OLS. When 2j (j = 1, 2, ..., J) are not identically distributed,

then attention switches to WLS. But unfortunately, the not identically distributed case requires

choice of J hyperparameters:  (j = 1, 2, ..., J). This section considers extensions of White/Eicker/

Huber, motivated by sampling properties of VHC0, that suggest choices for  (j = 1, 2, ..., J).

The White/Eicker robust covariance matrix (17) has been criticized by numerous authors for

its sampling distribution (e.g., it tends to underestimate variances and test statistics have the wrong

size).6 Numerous suggestions have been made for adding weights to the diagonal elements of UHC0.

These weights can be interpreted as a choice for (j = 1, 2, ..., J) in ,  from which values

of prior hyperparameters (j = 1, 2, ..., J) can be backed out. The resulting  results in proper

priors and a well-defined marginal mass function (3).

An early critic of (17), predating White (1980), was Hinkley (1977) who suggested using b

and scaling-up  by J/(J - K): 

While this reminiscent of symmetric prior for the standard case, it is different in an important way:

unlike (23), (16) scales  down, not up. Hence, a Bayesian justification of (23) is unclear.

Other modifications of VHC0 involve diagonal elements (j = 1, 2, ..., J) of the so-called “hat

(22)

(23)
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7Leamer (1991?) calls the treatment of heteroskedasticity that alters the size but not the
location of confidence sets “White-washing.” He argues an increase in the standard deviations after
White-correction signals a potentially large change in the location of the confidence sets. On the
other hand, if the White-correction leaves unchanged or reduces the standard errors, he argues the
estimates are likely to be insensitive to reweighting.

matrix” X(XNX)-1XN. Cribari-Neto and Zarkos (2001) showed that the presence of high leverage

points, as measured by (j = 1, 2, ..., J), in the design matrix is more decisive for the finite-sample

behavior of different HC robust covariance matrix estimators than the degree of heteroskedasticity.

Table 1 summarizes the effects of adding weights to the diagonal elements of UHC0, using a

common notation  HC0-HC4 in the literature. Besides the original White/Eicker/Huber case (HC0)

and Hinkley’s (HC1), Table 1 contains the modifications by Horn, Horn, et al. (1975) (HC2),

MacKinnon and White (1985) (HC3), and Cribari-Neto (2004) (HC4). In addition Table 1contains

three Bayesian analogs (denoted HC2a, HC3a, and HC4a) that give three different choices for 

(j = 1, 2, ..., J) that imply the same diagonal weights for UHC0  suggested by HC2-HC4. HC2a-HC4a,

however, center inferences over  (instead of b) and use  instead of the OLS residuals.

7. Summary

The Bayesian bootstrap provides a Bayesian semiparametric analysis of the linear model not

requiring a distributional assumption other than the multinomial sampling. Using the Bayesian

bootstrap and a symmetric improper prior in the standard case, Lancaster (2003) showed the White/

Eicker/Huber robust standard errors are reasonable asymptotic approximations to the posterior

standard deviations around OLS. Using a proper (possibly heterogeneous) prior in the general case,

this paper has extended Lancaster’s results and linked the White/Eicker/Huber  robust standard

errors to posterior Bayesian analysis, but with two important differences: the posterior location for

$ = $(2) is WLS not OLS, and the posterior covariance matrix (14b), while of a similar form to (16),

is evaluated at WLS residuals instead of OLS residuals.7

Choice of  and  is critical. Section 5 suggested choosing   to locate

the prior over zero slopes. Section 6 drew on various modifications of the White/Eicker/Huber

estimator to suggest choices for .



10

References

Chamberlain, G. and G. W. Imbens, 2003, “Nonparametric Applications of Bayesian Inference,”

Journal of Business & Economic Statistics 21, 12-18.

 

Chesher, A. and I. Jewitt, 1987, “The Bias of a Heteroskedasticity Consistent Covariance Matrix

Estimator,” Econometrica 55, 1217-1222.

Cribari-Neto, F., 2004, “Asymptotic Inference Under Heteroskedasticity of Unknown Form,”

Computational Statistics & Data Analysis 45, 215-233.

Cribari-Neto, F., S. L. P. Ferrari, and G. M. Cordeiro, 2000, “Improved Heteroscedasticity-

Consistent Covariance Matrix Estimators,” Biometrika 87, 907–918.

Cribari-Neto, F., S. G. Zarkos, 1999, “Bootstrap Methods for Heteroskedastic Regression Models:

Evidence on Estimation and Testing,” Econometric Reviews 18, 211–228.

Cribari-Neto, F., S. G. Zarkos, 2001, “Heteroskedasticity-Consistent Covariance Matrix Estimation:

White’s Estimator and the Bootstrap,” Journal of Statistical Computing and  Simulation 68, 391-

411.

Cribari-Neto, F. and N. Galvão, 2003, “A Class of Improved Heteroskedasticity-Consistent

Covariance Matrix Estimators,” Communications in Statistics: Theory and Methods 32, 1951-1980.

Efron, B., 1979, “Bootstrap Methods: Another Look at the Jackknife,” Annals of Statistics 7, 1-26.

Eicker, F., 1963, “Asymptotic Normality and Consistency of the Least Squares Estimators for

Families of Linear Regressions,” Annals of Mathematical Statistics 34, 447-456.



11

Eicker, F., 1967, “Limit Theorems for Regressions with Unequal and Dependent Errors,” in

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1.

Berkeley: University of California Press, 59-82.

Godfrey, L. G., 2006, “Tests for Regression Models with Heteroskedasticity of Unknown Form,”

Computational Statistics & Data Analysis 50, 2715-2733,

Hahn, J.,1977, “Bayesian Bootstrap of the Quantile Regression Estimator: A Large Sample Study,”

International Economic Review 38, 206–213.

Hinkley, D. V., 1977, “Jackknifing in Unbalanced Situations,” Technometrics 19, 285-292.

Horn, S. D., Horn, R. A., Duncan, D. B., 1975, “Estimating Heteroskedastic Variances in Linear

Models,” Journal of the American Statistical Association 70, 380-385.

Huber P. J., 1967, “The Behavior of Maximum Likelihood Estimates Under Nonstandard

Conditions,” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and

Probability , Vol. I (Berkeley: University of California Press), 221–233.

Kauemann, G. and R. J. Carroll, 2001, “A Note on the Efficiency of Sandwich Covariance Matrix

Estimation,”  Journal of the American Statistical Association 96, 1387-1396.

Lancaster, T., 2003, “A Note on Bootstraps and Robustness,” unpublished manuscript, Brown

University.

Lancaster, T., 2004, An Introduction to Modern Bayesian Econometrics (Oxford: Blackwell

Publishing).



12

MacKinnon, J. and H. White (1985), “Some Heteroskedasticity-Consistent Covariance Matrix

Estimators with Improved Finite Sample Properties,” Journal of Econometrics 29, 305-325.

Ragusa, G., 2007, “Bayesian Likelihoods for Moment Condition Models,” unpublished  manuscript,

University of California, Irvine.

Rubin, D., 1981, “The Bayesian Bootstrap,” Annals of Statistics 9, 130-134.

White, H., 1980, “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test

for Heteroskedasticity,” Econometrica 48, 817-838.



13

Table 1: Choice of 

Authors E[$*(g)*z]

HC0 White/Eicker/Huber 6 0 b

HC1 Hinkley b

HC2 Horn, et al. b

HC2a

HC3 MacKinnon/White b

HC3a

HC4 Cribari-Neto b

HC4a

Note:   (j = 1, 2, ..., m),  (j = m+1, m+2, ..., J),  and


