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Abstract

Contest functions (alternatively, contest success functions) determine probabilities of winning and
losing as a function of contestants’ effort. They are used widely in many areas of economics that
employ contest games, from tournaments and rent-seeking to conflict and sports. We first examine
the theoretical foundations of contest functions and classify them into four types of derivation:
stochastic, axiomatic, optimally-derived, and microfounded. The additive form (which includes
the ratio or “Tullock” functional form) can be derived in all four different ways. We also explore
issues in the econometric estimation of contest functions, including concerns with data, endogene-
ity, and model comparison.
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1. Introduction

Contests are games in which each player exerts effort in order to increase his or her probability
of winning a prize. There is a variety of areas of economics and other social sciences in which
contests are applied. They include advertising by rival firms (Schmalensee, 1972, 1978), tourna-
ments or influence-activities within organizations (Rosen, 1986; Tsoulouhas et al., 2007; Müller
and Wärneryd, 2001), patent and other technology races (Reinganum, 1989; Baye and Hoppe,
2003), lobbying and rent-seeking (Tullock, 1980; Nitzan, 1994), litigation (Hirshleifer and Os-
borne, 2001; Robson and Skaperdas, 2008), wars and other types of conflict (Hirshleifer, 1995,
2000; Garfinkel and Skaperdas, 2007; Levitin and Hausken, 2010), political campaigns (Baron,
1994; Skaperdas and Grofman, 1995), as well as sports (Szymanski, 2003). Konrad (2009) pro-
vides an excellent introduction to the basic theory and applications of contests.1

IWe thank an anonymous referee for very helpful comments and valuable suggestions.
Email addresses: hao.jia@deakin.edu.au (Hao Jia), sskaperd@uci.edu (Stergios Skaperdas),

samarth.vaidya@deakin.edu.au (Samarth Vaidya)
1For an illuminating survey of contests and its various applications see Corchón (2007).
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How combinations of efforts by the players participating in a contest translate into probabilities
of wins and losses is a critical component of a contest game. The functions that describe these
probabilities as functions of efforts are often called contest success or simply contest functions.2

In terms of their usage, they are analogous to production functions in production theory but they
differ from production functions in two important ways. First, the outputs of contest functions are
probabilities of wins and losses instead of deterministic outputs. Second, the inputs into contest
functions, the efforts of the participating players, are adversarially combined so that a player’s
probability of winning is increasing in her or his effort but is decreasing in the efforts of all the
adversaries.

The efforts themselves can be as varied as the particular social or economic environment to
which the contest is meant to apply. In the case of tournaments and other intra-organizational
competition the efforts are usually denominated in labor time expended. For advertising, lobby-
ing, patent races, litigation, sports, wars, or political campaigns the cost of effort is typically rep-
resented by monetary expenditures but the effort itself can be the output of an ordinary production
function that is a function of a large number of inputs (purchased with money). For advertising,
the efforts can be advertising messages that are produced by means of different types of special-
ized labor (artistic staff, creative staff, film directors and crews, and so on) and all the capital and
other inputs that go together with them. For lobbying, the efforts can be varied from the face-time
of lobbyists with political decision-makers to grass-roots organizing, produced by means of dif-
ferent types of labor, capital, and material inputs. For sports, although the direct effort is that of
the players on the team, how these efforts are combined as well as how the individual players and
teams are nurtured, developed, and coached by managerial and coaching staff also clearly matter.
This indicates that the ultimate “effort” of a sports team can also be best described by a production
function that includes many inputs. For wars, the efforts of the adversaries can be thought of mili-
tary capacities in the battlefield that are themselves outputs of different types of labor and arming
(themselves produced with other inputs).

Contest functions are probabilistic choice functions that, to our knowledge, were first pro-
posed by Luce (1959) in order to study individual choice. Later, and somewhat independently,
econometricians developed such functions for the estimation of discrete choice variable (e.g., Mc-
Fadden, 1974). Friedman (1958) is an early application of the popular “ratio” functional form to
an advertising game.

In this paper we first review the different functional forms that have been employed in ap-
plications of contests and show how some of them can be derived using four different methods.
First, stochastic derivations of contest functions start from the supposition that effort is a noisy
contributor to some output and comparison of the different outputs of players determines the out-
come of the contest. The probit and logit forms are the two most well-known and used forms
that can be derived stochastically. Second, axiomatic derivations link combinations of properties
(or, axioms) of contests to functional forms. The logit form can also be derived axiomatically
as a special case of the more general additive form. Third, optimal-design derivations suppose

2We use the simpler second term in this paper even though one of the authors was one of the first users of the former
term (Skaperdas, 1996), for reasons that are not clear to him at this time. Probably, he followed Hirshleifer (1989)
who used the term “conflict and rent-seeking success functions” in his exploration of different functional forms.
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that a designer with certain objectives about effort or other variables designs the contest, with the
functional form being a result of such a design. Finally, positive-microfoundations derive contest
functions by characterizing environments in which they naturally emerge as win probabilities of
the contestants instead of being consciously chosen by a contest designer. We review incomplete
information, search-based and Bayesian representations. By no means do all derivations relate to
the different environments that contests have been applied and we will be indicating the areas of
applications that each derivation is better suited for. We also we review some econometric issues
in the econometric estimation of contest functions.

In the next section, we review the different classes of functional forms that have appeared in
the literature and discuss some of their properties. In section 3 we explore the four different types
of derivations of contest functions, in section 4 we examine some issues in estimation, and we
conclude in section 5.

2. Probit, logit and other functional forms

Our purpose in this section is to introduce and discuss the properties of different functional
forms of contest technologies before exploring their theoretical foundations in the next section.

Consider two adversaries or contestants, labeled 1 and 2. Denote their choice of efforts as
e1 and e2. We suppose that efforts are themselves outputs of production functions of different
inputs as discussed in the introduction. These production functions can be the same for the two
adversaries or they can be different. Associated with them are cost functions c1(e1) and c2(e2).
Since we are solely concerned with how pairs of efforts translate into probabilities of wins and
losses and not how efforts might be chosen, we will keep these cost and production functions in
the background. For any given combination of efforts, each rival has a probability of winning
and a probability of losing. Denote the probability of party i = 1 winning as p1(e1, e2) and the
probability of party i = 2 winning as p2(e1, e2).

For the pi’s to be probabilities, they need to take values between zero and one, and add up to
one: p2(e1, e2) = 1 − p1(e1, e2) ≥ 0. Moreover, we can expect an increase in one party’s effort
to increase its winning probability and reduce the winning probability of its opponent; that is, we
should have p1(e1, e2) be strictly increasing in e1 (when p1(e1, e2) < 1) and strictly decreasing in
e2 (when p1(e1, e2) > 0).

A class of functions that has been widely examined takes the following additive form:

p1(e1, e2) =

{ f (e1)
f (e1)+ f (e2) if

∑2
i=1 f (ei) > 0;

1
2 otherwise,

(1)

where f (·) is a non-negative, strictly increasing function. This class has been employed in a
number of fields, including in the economics of advertising (Schmalensee, 1972, 1978), sports
economics (Szymanski, 2003), rent-seeking (Tullock, 1980; Nitzan, 1994), as well as contests in
general (Konrad, 2009).

One unique and appealing feature of the class of contest functions in (1) is that it naturally
extends to contests involving more than two parties. Thus, if there were n parties to the contest,
denoting the effort of rival i by ei, and the vector of efforts by all other agents j , i by e−i, the
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winning probability of i would be as follows:

pi (ei, e−i) =

 f (ei)∑n
j=1 f (e j)

if
∑n

j=1 f (e j) > 0;
1
n otherwise.

(2)

The most commonly used functional form is the one in which f (ei) = eµi ,3 where µ > 0 (and
often, for technical reasons of existence of pure-strategy Nash equilibrium, µ ≤ 1), so that

p1(e1, e2) =
eµ1

eµ1 + eµ2
=

( e1
e2

)µ

( e1
e2

)µ + 1
. (3)

This functional form, sometimes referred to as the “power” form or as the “ratio” form, is that
which was employed by Tullock (1980) and the ensuing voluminous literature on rent-seeking.
This is also the workhorse functional form used in the economics of conflict. As Hirshleifer
(1989) has noted, the probability of winning in this case depends on the ratio of efforts, e1

e2
, of the

two parties.
A suitable modification of (1) can accommodate asymmetric effects of contestant efforts on the

win probabilities as shown by the following functional form, where fi(·) is a non-negative, strictly
increasing function:

pi(e1, e2) =
fi(ei)

f1(e1) + f2(e2)
. (4)

Assuming fi(ei) = ai f (ei), a particularly convenient version of (4) is given by:

p1(e1, e2) =
a1 f (e1)

a1 f (e1) + a2 f (e2)
, (5)

where ai > 0 for every i = 1, 2, with ai > a j for i , j implying that contestant i has an edge
over contestant j in transforming its effort into a win probability. Variants of this functional form
have been applied to litigation (Hirshleifer and Osborne, 2001; Robson and Skaperdas, 2008) and
political campaigns (Baron, 1994) among other settings.

Notice that in all of the above contest functions, one of the contestants always wins the prize. A
variation allows one to accommodate the possibility of a “draw”, where with a positive probability
neither contestant wins the prize as shown by the functional form below:

p1(e1, e2) =
f1(e1)

s + f1(e1) + f2(e2)
, (6)

where f1(·) and f2(·) are non-negative strictly increasing functions and s > 0 is a constant term.
As discussed subsequently, this functional form with s = 1 has been axiomatized by Blavatskyy
(2010). A stochastic derivation is provided by Jia (2009). It has also been investigated as an
optimal contest design by Dasgupta and Nti (1998). Loury (1979) provides a natural application
of such a contest function to models of patent races.

3A variation on this form is f (ei) = aeµi + b where a, b > 0. Amegashie (2006) examined the properties of this
form.
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Another well-known functional form is the following “logit” specification, in which f (ei) =

exp(µei), where µ > 0, so that,

p1(e1, e2) =
exp(µe1)

exp(µe1) + exp(µe2)
=

1
1 + exp(µ(e2 − e1))

. (7)

Again as Hirshleifer (1989) has noted and as is evident from the expression following the second
equal sign in (7), by this specification, the probability of winning depends on the difference in
efforts between the two parties. This is also the case with the probit functional form (see, e.g.,
Train, 2003; Albert and Chib, 1993), where the win probabilities take the form:

p1(e1, e2) = Φ(e1 − e2), (8)

In the above expression, Φ is the cumulative distribution function of the standard normal distribu-
tion. As discussed subsequently, (8) has stochastic foundations.

Another type of contest functions where the probability of winning depends on the difference
in efforts is the so-called “Difference form” as shown below:

p1(e1, e2) = α + h1(e1) − h2(e2), (9)

where α ∈ (0, 1) and the functions h1(e1) and h2(e2) are suitably constrained so that p1(e1, e2) ∈
[0, 1]. Contest games under specific cases of this class of functions have been explored by Baik
(1998) and Che and Gale (2000). Skaperdas and Vaidya (2009) have derived this class in a
Bayesian framework as an outcome of an audience’s (for example, a judge) inference from “ev-
idence” produced by two contestants, with h1(e1) and h2(e2) being probabilities. Corchón and
Dahm (2010) also derive a particular class of the difference form (similar to that examined by Che
and Gale (2000)) in an axiomatic setting in which the contest success function is thought of as a
share instead of as a probability.

All the above contest functions are imperfectly discriminating in the sense that with all of them,
the prize at stake is awarded probabilistically to one of the contestants with higher effort leading
to a higher probability of winning the prize. In the all-pay auction contest, the prize allocation is
extremely sensitive to the efforts put in so that the contestant with the highest effort wins the prize
with certainty as illustrated by a 2-player all-pay contest function below:

p1 (e1, e2) =


1 if e1 > e2;
1
2 if e1 = e2;
0 if e1 < e2.

(10)

It has been established that the all-pay auction contest (10) can be understood as a limiting form
of (3) as µ → ∞. Applications of all-pay auctions include lobbying (Baye et al., 1993), patent
races (Dasgupta, 1986), political campaigning (Che and Gale, 1998) and ownership structure and
non-price competition among firms (Konrad, 2000, 2006). As we shall see in the next section, the
general additive form as well as the other contest functions listed above have various stochastic,
axiomatic and other theoretical foundations.
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3. Theoretical foundations of contest functions

We will consider four types of derivations. Stochastic foundations are based on assumptions
about how performance in a contest – in the sense of probabilities of winning and losing – might
be a noisy function of efforts. Axiomatic foundations are derived from general properties (or,
axioms) that a contest function might be expected to have and the implications of combinations of
such properties would be expected to have for functional forms. We also explore the circumstances
under which some of the above contest functions can be justified as optimal choices from a contest
designer’s perspective. Given the wide variety of applications of some contest functions (such as
the additive form) in areas such as lobbying, political campaigns and research tournaments, we also
survey the literature that provides Bayesian inferential and other “positive” micro-underpinnings
that can justify the usage of these functions in the relevant contexts.

3.1. Stochastic derivations
The stochastic derivation relies on the basic premise that the outcome of a particular contest

can be thought of as a noisy function of the two rivals’ efforts. In particular, we can posit that each
rival’s “performance”, denoted by Yi, is a function of his effort and noise so that Yi = h(ei, θi) where
θi represents a random variable and h(·, ·) is a function of the two variables. Then, the probability
of side 1 winning can be represented by the probability that its performance is higher than that of
its adversary so that:

p1(e1, e2) = Pr[Y1 > Y2] = Pr[h(e1, θ1) > h(e2, θ2)]

From this stochastic perspective, each side’s probability of winning depends not only on the
efforts of both sides, but also on the functional form of h(·, ·) and the distribution of the θis’.4

The most commonly used form of h(·, ·) is the linear form so that h(ei, θi) = ei + θi. In that case,
when the θi’s are independently identically distributed according to the normal distribution, the
resultant probabilities of winning and losing for the two sides are described by (8), the probit form
(see, e.g., Train, 2003; Albert and Chib, 1993), where Φ is the cumulative distribution function of
the standard normal distribution. The probit form has been applied in the literature on tournaments
in labor markets as in Lazear and Rosen (1981). Dixit (1987) has compared the strategic incentive
to pre-commit on effort under the probit form with that under (4). Most likely because there is no
analytical functional form representing the probit, it has not been used as extensively in the contest
literature as for (3) or its more general form in (1).

Still when h(ei, θi) = ei + θi but the θi’s are independently identically distributed according to
the extreme value distribution, the n-player version of the logit form in (7) is obtained (McFadden,
1974):

pi(ei, e−i) =
exp(µei)∑n

j=1 exp(µe j)
. (11)

4As discussed later, Corchón and Dahm (2010) provide a similar derivation of various contest functions, except
that in their setting, the performance of each contestant is actually the utility of the prize awarder from giving the prize
to that contestant and randomness arises out of incomplete information on the part of contestants about a parameter
governing the utility function of the awarder for which every contestant has a common prior.
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The cumulative distribution function of the (type I) extreme value distribution is

Gθi = exp(− exp(−z)),

which has been known as the double exponential distribution (Yellott, 1977; Luce, 1977) or the
log-Weibull distribution. The above discussion suggests that the stochastic derivation is particu-
larly amenable to contest functions where win probabilities depend on differences in efforts.

Motivated by the derivations of the probit and logit forms, Hirshleifer and Riley (1992) were
the first to provide a stochastic foundation for the ratio form (3) with µ = 1 by assuming the
performance function h(·, ·) to be of the multiplicative form h(ei, θi) = eiθi and the random shocks
θi following an exponential distribution. Jia (2008b) extends this stochastic foundation to the n-
party ratio form:

pi(ei, e−i) =
eµi∑n
j=1 eµj

. (12)

In particular, he demonstrates that for n > 2, the contest model has the ratio form (12) if and only
if the independent random shocks {θi}

n
i=1 have a specific distribution, which is known as the Inverse

Exponential Distribution.
Specifically, a random variable belongs to the inverse exponential distribution with parameters

α and µ, α, µ > 0 [IEXP(α, µ) for short] if and only if its probability density function (p.d.f.) has
the form:

g(z) = αµz−(µ+1) exp(−αz−µ)I[z>0], (13)

where I is the indicator function which is equal to 1 when z > 0 and 0 otherwise. Accordingly, the
cumulative distribution function (c.d.f.) of IEXP(α, µ) is

G(z) =

∫ z

0
h(s)ds = exp(−αz−µ).

For an IEXP(α, µ) distributed random variable, one can verify that neither its expectation nor
variance exist, and its mode is located at ( µα

µ+1 )1/µ. When α increases, its p.d.f. becomes flatter, and
more and more mass is being pushed to the right. The parameter µ plays an opposite role. When
µ decreases, the p.d.f. becomes flatter.

Jia (2008b) interprets the parameter µ in (11) and (12) as the “noise” of the contest. Common
to all contestants, the parameter µ captures the marginal increase in the probability of winning
caused by a higher effort. Contests with low µ can be regarded as poorly discriminating or “noisy”
contests. When µ converges to zero, the contest outcome converges to a random lottery with no
dependence upon the efforts of the adversaries. Conflicts with high µ can be regarded as highly
discriminating; as µ approaches infinity, the contest outcome is determined by an all-pay auction
of the type in (10).

A lucid interpretation of the power µ, and an alternative derivation of (12) from (13), has been
given by Fu and Lu (2008), which draws an equivalence between contest games and research
tournaments.

The stochastic approach developed in Jia (2008b) can be easily extended to the general additive
contest model (2). As such the logit form (11) is isomorphic to the ratio or power form (12) up to
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a logarithmic transformation. In addition, asymmetric functional form (5) can be rationalized by
relaxing the assumption that all the random variables θis’ are identically distributed.

Jia (2009) extends the stochastic approach further to allow for the possibility of a draw (or,
stalemate) in contest, which corresponds to the situation that no party can force a win. This is
accomplished by introducing a “threshold” c into the performance comparing process. The intu-
ition is simple. A draw can arise if every performance comparison is decided by estimates of the
difference in the adversaries’ performances with error and is a draw if this difference is smaller
than a “threshold” value c > 0. Indeed, in most contests, the outcomes are not determined by
each party’s performance, but by measures of their performances, which is the process of estimat-
ing the magnitude of all parties’ performances against some unit of measurement. Adopting the
assumptions that (1) adversaries’ performances are determined by their efforts and some random
variables θis’, and (2) the random variables are independently and identically distributed with an
inverse exponential distribution, Jia (2009) derives the following functional forms:

pi(ei, e−i) =
f (ei)

f (ei) + c
∑

j,i f (e j)
, c > 1, (14)

and
pi(ei, e−i) =

f (ei)
(n − 1)c +

∑n
j=1 f (e j)

, c > 0. (15)

Notice that (15) is essentially the n-player version of (6) with fi(·) = f (·), and s = (n − 1)c.
Again, by relaxing the i.i.d. assumption to require only independence, one can easily obtain more
general asymmetric forms. Contests with the possibility of a draw have also been studied in the
literature on labor market tournaments and incentives. Nalebuff and Stiglitz (1983) show how a
tournament can be improved by introducing the possibility of a draw so that an agent wins only if
he delivers an output that exceeds that of his rival by a certain gap.

3.2. Axiomatic foundations
Luce (1959) first axiomatized probabilistic choice functions such as those in (2) relation to

utility theory, while Skaperdas (1996) provided an axiomatization in relation to contests and con-
flict. Key to both axiomatizations is an Independence of Irrelevant Alternatives property. This
property requires that the outcome of a contest between any two parties depend only on efforts of
these two parties and not on the efforts of any third parties to the contest.

The particular “ratio” form in (12) has the property of homogeneity of degree zero in efforts,
or pi(tei, te−i) = pi(ei, e−i) for all t > 0. This is an analytically convenient property and likely
accounts for the popularity of this functional form in applications.

The “logit” form (11) can be derived under the property that each adversary’s probability of
winning is invariant to the addition of a constant D to the effort of each adversary (i.e., pi(ei +

D, e−i + D) = pi(ei, e−i) for all D such that e j + D > 0 for all j).5 Though the logit form also has
analytical advantages, it has not been used as much as the power form shown in (3) because for a
number of well-specified models, no pure-strategy Nash equilibrium exists.

5Hirshleifer (1989, 1995, 2000) provide many insightful discussions of contest technologies and comparisons of
the functional forms in (3) and (7).
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Thus, both the “ratio” functional form in (3) and the “logit” form in (7) can be derived ax-
iomatically as well as stochastically.

The class in (1) and the specific forms in (3) and (7) have the property of symmetry or
anonymity, in the sense that if the efforts of two adversaries were switched, their probabilities
of winning would switch as well. Consequently when two adversaries have the same efforts, they
have equal probabilities of winning and losing. There are circumstances, however, in which one
party might be favored over another even though they might have the same levels of effort. This
could be due to the awarder having a bias in favor of one opponent over the other or one of the
contestants may have a natural advantage (such as the side arguing for the “truth” in a litigation
trial as in Hirshleifer and Osborne (2001)). A simple way to extend (1) to take account of such
asymmetries is via (5). Note that when the adversaries have the same efforts, e1 = e2, 1’s proba-
bility of winning equals a1

a1+a2
and 2’s probability of winning is a2

a1+a2
. Consequently, when a1 > a2,

1 has the advantage, whereas when a1 < a2, 2 has the advantage. Clark and Riis (1998) have
axiomatized this asymmetric form for the case of the ratio form (i.e., where f (e) = eµ). Rai and
Sarin (2009) have provided more general axiomatizations of this that also allow for the function
f (·) to be one of many inputs and not just of effort (which we have assumed, in general, to be
of other inputs as well). Finally, Münster (2009) provided a reinterpretation and extension of the
axioms in Skaperdas (1996) and Clark and Riis (1998) by allowing contestants to be members of
groups.

For functional forms that allow for the possibility of a draw, Blavatskyy (2010) axiomatized (6)
with s = 1. However, restricting s to 1 does not have any special significance because if we were
to multiply the numerator and denominator of (6) with s = 1 by any positive number we would
get an equivalent functional form.6 One way of thinking about (6) is to consider a third party, say
“Nature,” that has a constant effort, e′, which is defined by f (e′) = 1 (where f (·) is non-negative
and increasing). When Nature “wins,” a draw occurs.7 Blavatskyy (2010) has extended (6) to
more than 2 adversaries but not in the straightforward way that (2) extends (1).

3.3. Optimal-design derivations
A central feature of any imperfectly discriminating contest function is the stochastic awarding

of the prize to one of the contestants as opposed to an all-pay auction contest where the contestant
with the highest effort wins the prize with certainty. In some cases, as in some forms of rent-
seeking, the prize awarder might also be able to design the contest. A natural question that arises
is why should the contest designer prefer to allocate the prize stochastically and what form of the
contest function might be optimal in this regard? The literature that studies this question of optimal
contest design suggests that the answer depends on the objective of the contest designer, the choice
set of contest functions at his disposal and the extent of heterogeneity among contestants.

Epstein and Nitzan (2006) study contest design in a lobbying context with two contestants
(denoted by 1 and 2 respectively) where the “prize” at stake is a discrete policy choice made by

6Just define fi(ei) ≡ 1
(n−1)c f (ei). Also note that (6) is essentially the same as the 2-player asymmetric version of

(15) derived stochastically by Jia (2009).
7Dasgupta and Nti (1998) show how a linear symmetric version of (6) with fi(·) = aei, a > 0, can be an optimal

choice of contest technology for the prize awarder when the “draw” results in him retaining the prize.
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the government between status quo or policy change. The government needs to choose between
randomizing its policy choice via the ratio functional form (3) with µ ≤ 2 or going for an all-pay
auction as per (10) or outrightly choosing a policy in favor of one contestant. This choice critically
depends on the government’s objective function U(.) which they assume to be of the form:

U(·) = α(E(w1) + E(w2)) + (1 − α)(e1 + e2).

Notice that in general U(·) not only depends on aggregate effort (e1 +e2) but also on the welfare
of the contestants where E(w1) = Pr1(·)v1 − e1 represents the expected net payoff to interest group
1 that values its preferred policy stance at v1 and its realization depends on the policy choice
method used by the government (as embodied in probability of selection of its favored policy Pr1).
Analogously, E(w2) = (1 − Pr1(·))v2 − e2 represents the expected net payoff of interest group 2
from adoption of its favored policy which it values at v2.We assume that v1 = bv2 where b ≥ 1 so
that the interest group 1 has a higher stake. It is implicitly assumed that either interest group does
not derive any benefits if their favored policy is not chosen.

From U(·), it is straightforward to see that if α = 1 so that the government only cared about
interest groups’ welfare and not their efforts, then it would never randomize and always choose
against the status quo in favor of interest group 1 as b ≥ 1 . More generally, the government would
prefer to set up a contest and not choose outrightly in favor of 1 only if: α(E(w1) + E(w2)) + (1 −
α)(e1 + e2) > αbv2, which gives the following condition:

(1 − 2α)
α

(e1 + e2)
(1 − Pr1)

> (b − 1)v2.

Using the above condition, they show that the all-pay auction is preferred over both (3) with
µ ≤ 1 and an outright decision in favor of 1 when α < 1

3 . Hence in this setting the usage of the
standard Tullock lottery contest ((3) with µ = 1) can be justified only when an all-pay auction is
not feasible. However, they show that (3) with 2 > µ > 1 can be the policy maker’s optimal choice
and preferred over the all-pay auction even when α < 1

3 , if for a given µ, the stake asymmetry
b is sufficiently large or for a given b the return to lobbying µ is sufficiently high. Hence, the
paper provides a partial justification for usage of (3) with 2 > µ > 1 in the lobbying context when
the relative weight α, stake asymmetry b and return to lobbying µ are in a certain range. Other
circumstances have also been identified in the literature such as budget constrained contestants
(Che and Gale, 1997), valuation asymmetries (Fang, 2002) and endogenous lobbying proposals
(Münster, 2006) under which the standard Tullock lottery contest might be superior to an all-pay
auction in eliciting higher aggregate effort from the contestants.

In contrast to Epstein and Nitzan (2006), Dasgupta and Nti (1998) examine a case where the
prize awarder’s utility does not depend on the utilities of the contestants per se but rather on their
total effort. Further, they allow for the prize awarder to derive value v0 from the prize if it remains
unallocated. Assuming n ≥ 2 symmetric contestants, in their setting, the awarder’s choice problem
involves selecting among additive concave contest functions as given by an n-player symmetric
version of (6) where fi(·) = f (·) with f (·) restricted to being a twice differentiable, increasing
and concave function, f (0) = 0 and s ≥ 0. Notice that the term s allows the awarder to retain
the prize with a positive probability. In this set up, they show that for any given, n, v, s, the
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second stage symmetric contestants’ equilibrium induced by any specific concave f (·) can be
exactly equivalently induced by a linear specification f̃ (·) = aei + b where a > 0, b ≥ 0. Hence
in determining the optimal contest function in the first stage, it is sufficient to focus on the linear
specification with a, b being the choice variables. Next, they show that for any given s, the optimal
contest function always takes the homogenous linear form with f (·) = aei. They fully characterize
the optimal choice of both a and s for the case of a risk neutral contest designer. Their results are
intuitive. They show that when v0 is very small so that the contest designer cares very little about
the prize and mostly about total effort, he chooses s = 0 and a = 1 so that the optimal contest
function is (12) with µ = 1 (which is the standard Tullock lottery contest). When the contest
designer cares about the prize sufficiently, the optimal s is positive but non-unique and the size of
a is influenced by his valuation of the prize. A higher valuation of the prize induces the designer
to reduce a, as although doing so induces lower aggregate effort, it also boosts his probability of
retaining the prize.

Nti (2004) further simplifies the contest designer’s objective function to assume that he only
cares about maximizing aggregate effort. With this assumption, the paper examines 2 player con-
tests where players may differ in their valuations of the prize (v1 ≥ v2). Player asymmetry makes
the problem of eliciting effort complicated as a player with the lower valuation has a lower in-
centive to put in effort which in turn allows the higher stake player to economize on its effort
too. Hence asymmetric player valuations might induce the contest designer to introduce a corre-
sponding asymmetry in the contest functions to mitigate the negative effect on total effort. Indeed,
when the contest designer’s domain is restricted to the class of concave asymmetric functions as
in (4), the paper shows that the linear asymmetric function as per (5) with f (ei) = ei is optimal
with a2 > a1 where contestant 2 with a lower stake is assigned a higher weight in the contest to
boost his incentive to put in effort. The paper also shows, that if the contest designer’s domain was
unrestricted, his optimal contest design would be an all-pay auction with a reservation price equal
to the higher valuation, v1 so that:

p1(e1, e2) =


1 if e1 ≥ v1 and e1 > e2;
1
2 if e1 = e2 ≥ v1;
0 if e1 < v1.

Franke et al. (2009) also assume that the objective of the contest designer is to solely max-
imize aggregate effort (

∑
i ei) and extend Nti (2004) to allow for n ≥ 2 potentially heterogenous

contestants. They restrict attention to the n-player linear version of the additive asymmetric contest
function (5)) with f (ei) = ei. They determine for any given number of players and their valuation
profiles, the optimal subset of active players and their corresponding contest weights ai that would
maximize the equilibrium aggregate effort. An interesting insight is that when players have asym-
metric valuations, the contest designer may want to restrict the number of active participants and
keep out players with very low valuations. However, they show that the optimal set of active play-
ers for n ≥ 3 case always involves at least 3 players. This suggests that starting from a 2 player
contest, the contest designer can always benefit by allowing at least one more player. However,
in general, admitting an extra contestant need not always be for the better. Further they show as
in Nti (2004) that among active players, the optimal weights ai are biased in favor of the weaker
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contestants to reduce the extent of heterogeneity among the participants in order to boost the total
equilibrium effort.

Throughout this discussion, we have assumed that the contest function itself is a choice variable
and is optimally chosen by the prize awarder given his choice set. Next, we examine the branch
of the literature which characterizes environments in which various contest functions naturally
emerge as win probabilities of the contestants instead of being consciously chosen by a contest
designer.

3.4. “Positive” microfoundations
3.4.1. Incomplete information and search based foundations

Corchón and Dahm (2010) provide an alternative positive justification of the randomness im-
plicit in an imperfectly discriminating contest function. In their framework, the decision maker
always decides deterministically in favor of a contestant i as long as Ui(Bi(θ), ei) > U j(B j(θ), e j)
for i , j where Ui(·) represents his utility from supporting contestant i, that is increasing not only
in ei but also in a state-dependent component Bi(θ) which depends on the realized value of a pa-
rameter θ distributed uniformly over the interval [0, 1]. They assume that the realized value of θ
is only known to the decision maker and not to the competing contestants. From the contestants’
perspective, it is this uncertainty over θ that creates a randomness in the allocation of the prize.
This justification is similar in spirit to the foundations provided for probabilistic voting models
in the political science literature where competing political candidates are uncertain about voter
preferences and therefore about how their chosen policy positions would affect voters’ choice. In
a two contestant setting, they show that any contest function, pi = pi(e1, e2) that satisfies intuitive
regularity conditions such as ∂pi/∂ei > 0, ∂pi/∂e j < 0 for all j , i and some reasonable boundary
conditions including pi → 1 when ei → ∞ and pi → 0 when ei → 0 is always rationalizable
by a suitable pair of payoff functions Ui, as long as Bi(θ) satisfies a single crossing condition.8

Hence they show that the general asymmetric additive form as in (4) can be rationalized using
a multiplicative pair of utility functions for the decision maker U1(B1(θ), e1) = (1 − θ) f1(e1) and
U2(B2(θ), e2) = θ f2(e2). The various versions of difference form contest function as in (9) can be
rationalized via additive forms of utility functions such as Ui(Bi(θ), ei) = Bi(θ) + aiei + Ai, where
ai and Ai are constants. Unfortunately, they find that with more than two contestants, in general,
this approach cannot be used to rationalize the n-player versions of the above contest functions.
However, through an innovative application of the Salop (1979) circular city model, they show
how the difference form (9) can be rationalized for multiple contestants when the prize awarder’s
utility function takes the specific form Ui(θ, ei) = u − k|li − θ| + eαi with u, k, and α ≤ 1 being
constants, li representing each contestant’s fixed position on a unit circle and θ representing the
decision maker preferred position on this circle which is unknown to the contestants with them
having a common uniform prior over it.

An interesting commonality between the optimal contest design literature surveyed above and
Corchón and Dahm (2010) is that in both these frameworks, it is assumed that the efforts put in by
the contestants directly contribute to the utility of the decision maker. This is easiest to appreciate

8This condition requires that θ′ that solves Ui(Bi(θ′), ei) = U j(B j(θ′), e j) for i , j, is well defined and unique.
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when the efforts can be interpreted as bribes or transfers which is plausible in certain rent-seeking
contexts. However, such contest functions have also been used in various other settings such as
trials, research tournaments and advertising where the contestant efforts need to be interpreted dif-
ferently. In an important work, Baye and Hoppe (2003) extend the work of Fullerton and McAfee
(1999) to show that a Tullock contest game can be naturally interpreted as a reduced form version
of an innovation tournament or patent race where the effort put in by the contestants are expendi-
tures on research trials and the randomness in the contest can be understood as a natural outcome
of the stochastic nature of innovation outcomes. They establish such equivalence across innovation
tournaments and patent races.

Let us consider their innovation tournament model first. In such a game, n ≥ 2 firms compete
to establish their monopoly over a new product via discovering the most valued design. In the first
stage, a firm i simultaneously determines how many parallel trials or experiments ei, i = 1, 2, . . . , n,
it wants to invest to search for the most valuable design or idea, where each trial costs c and
it represents an independent draw from a distribution of values over the interval [0, 1] with an
associated distribution function F. At the end of this stage, the outcomes of all parallel trials run
by firms are realized to them and each firm puts forward its best idea zi to the patent allocating
bureaucrat who then allocates the patent deterministically to the firm with the highest valued idea
while the others gain nothing. The paper establishes that such an innovation game is equivalent to
an n-player Tullock contest game with the form in (12) where µ = 1 except that the effort choices
ei ∈ {0, 1, 2, . . .} are discrete and the prize is given by:

v(e1, e2, . . . , en) =
1
c

[
1 −

∫ 1

0
[F(z)]

∑
j e jdz

]
,

which is increasing in individual effort (ei), rivals’ efforts (
∑

j,i e j), and total efforts (
∑

j e j), but at
a decreasing rate (via exponent of the the distribution function) rather than being fixed. However,
they show that via a suitable transformation of the distribution function, even the fixed prize case
can be shown to be strategically identical to an innovation tournament albeit with discrete effort
choice.

The paper also examines patent races where instead of the most highly valued design becoming
the winner, a prize of fixed value v goes to a firm that produces the design first. In this setting, ei

(representing research expenditures incurred by firm i) influences the “hazard rate” f (ei) ∈ [0, 1]
which gives firm i’s conditional instantaneous win probability between time t and t + dt given that
no innovation has occurred at or before t. They show that player i’s payoff in such a patent race
can be expressed as

πi(e1, e2, . . . , en) = v
f (ei)∑n

j=1 f (e j) + r
− ei.

In the above expression, r represents the discount rate. Given that f (·) is defined as an increas-
ing and concave function over the interval [0, 1], they show that a patent race game indeed becomes
strategically equivalent to a contest game with the form in (12) as r approaches 0 when f (ei) = eµi ,
µ ≤ 1, and the prize v ≤ n2/n − 1. Notice that while the restriction of discrete effort choice does
not apply here, the equivalence does impose restrictions on the sensitivity of the contest function
to efforts and the size of the prize.
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Such strategic equivalence has also been established between contest games and various types
of market interactions among firms. Szidarovszky and Okuguchi (1997) establish strategic equiv-
alence between the n-player version of the additive asymmetric contest game involving (4) and
Cournot competition among firms under certain specific demand and cost conditions. Similarly,
Menezes and Quiggin (2010) interpret the Tullock contest game involving (12) with µ = 1 as a
reduced form oligopsonistic competition among firms in an input market, when the relevant input
supply curve takes a specific form. More broadly, they argue that the Tullock contest can be under-
stood as competition among players in markets for “influence inputs”. Interpreting the contest this
way allows one to consider competition among players via alternative choice variables, such as
quantities purchased or prices offered apart from total expenditures as in the Tullock contest. They
show that the extent of rent-dissipation can depend on assumed choice variable for the competitors.

3.4.2. Bayesian foundations
We now turn to exploring the foundations for contest functions used to capture outcomes of

litigation, advertising, lobbying and electoral competitions where competing parties put in efforts
to persuade a relevant audience about the correctness of their competing views or assertions. In
these contexts, the expended efforts are not bribes or transfers but help produce arguments and
evidence towards supporting the contestants’ cases. Skaperdas and Vaidya (2009) show how the
contest functions representing win probabilities can be justified as natural outcomes of an audi-
ence’s Bayesian inference process in a trial setting involving a plaintiff (P), a defendant (D) and a
judge.9 While their model uses a judicial setting, the framework can be extended to other settings
as well such as consumer choice and voting where a decision-maker needs to decide in favor of
one party or another and is subject to persuasion from the competing parties. Below we discuss
their approach in greater detail.

In Skaperdas and Vaidya (2009), a judge uses Bayesian inference to evaluate the guilt of D
based on the evidence presented by the two competing parties, P and D. In the first stage, both P
and D expend efforts ep and ed respectively to gather evidence favorable to their cause. As a result,
via evidence production functions, each side may obtain a piece of evidence Ei (valued on a (0,∞]
scale) in its favor where i = p, d, which it then presents to the court. The evidence production
functions can be either deterministic or stochastic. In the second stage, based on the evidence pair
observed, the court assesses the likelihood ratio of guilt Lg and using it along with its prior belief
about guilt π, it determines its posterior probability of guilt π∗ using Bayes’ rule, so that:10

π∗ =
πLg

(1 − π) + πLg (16)

It is worth noting that the court is “limited world” Bayesian as it neither observes the efforts chosen
by either parties nor the underlying evidence production functions. Hence the only additional

9For an alternative axiomatic non-Bayesian approach to decision making by a trial court, see Daughety and Rein-
ganum (2000b,a), where it is assumed that rules of evidence and procedure impose sufficient constraints on a court so
as to not allow its judgment to be affected by priors. Their axioms are guided by the notion of procedural fairness and
lead to an one-parameter family of functions that aggregates the submitted evidence into the court’s assessment. For
an analysis of “naive” Bayesian decision-making by juries, see Froeb and Kobayashi (1996).

10By definition, Lg =
Pr(Ep,Ed |G)
Pr(Ep,Ed |I) . It is assumed that this ratio can be subjectively constructed directly as stated by

Kadane and Schum (1996) (p.127) in making a holistic assessment of the probative force of evidence.
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information it receives over and above its priors is the evidence pair presented at the trial.11 In
contrast, it is assumed that P and D are aware of the court’s inference process.

When the evidence production process is deterministic, the value of evidence obtained by con-
testant j, is given by E j = F j(e j) with j = p, d, where F j(.) is deterministically and monotonically
increasing in resources. Apart from resources, the “truth” is also expected to play a role in ev-
idence production so that for the same amount of resources, a contestant j arguing for the truth
would have an edge so that F j(e j) > Fi(ei), i, j = p, d with i , j when ei = e j.12 Using these
functions, and assuming that the court’s determination of Lg takes a power-law form:

Lg(Ep, Ed) = λ

(
Ep

Ed

)µ
,

where λ, µ > 0, the court’s posterior probability of guilt is shown to be the additive form:

π∗(Ep, Ed) =
πFp(ep)

(1 − π)Fd(ed) + πFp(ep)

when λ = µ = 1.13

To go from π∗ to the contest functions that capture the win probabilities as perceived by P and
D, they consider two alternative decision rules that the court might use to arrive at its verdict in
stage 3. One rule explored is that the court makes a probabilistic decision on guilt (akin to tossing
an unfair coin) as follows:

Choose G with probability π∗ and I with probability 1 − π∗. (Rule 1)

Another rule considered is “guilty beyond a reasonable doubt” or just “choose guilty if and
only if there is a better than even chance of guilt,” as given by:

Choose G if and only if π∗(ep, ed) > γ where γ ∈ (0, 1). (Rule 2)

It is shown that under both the rules, the win probabilities of the contestants can take the
additive asymmetric functional form in (5) where the bias parameters ai are influenced by π under
rule 1 and by the threshold γ under rule 2. To get to the additive contest function under rule 2, it is
assumed that contestants have a uniform distribution over π, instead of knowing its realized value
with certainty.

11This assumption is supported broadly by considerable amount of research in psychology and related areas (for an
overview of research in this area, see Cialdini, 2001).

12As a specific example, consider the following production functions:Ep = Fp(ep) = ϕ f (ep) and Ed = Fd(ed) =

(1−ϕ) f (ed) where, when the Defendant is innocent we have ϕ ∈ (0, 1/2) and, similarly, when the Defendant is guilty,
ϕ ∈ (1/2, 1). The function f (·) is monotonically increasing in its argument and the parameter ϕ captures the impact of
truth on evidence production.

13The power-law form is justified via research in psychophysical experiments, where it is well established that
quantitative human perception (such as sensation of relative brightness of light or loudness of sound, as well as
judgments concerning intensity of attitudes and opinions) of stimuli follows a power law. See Stevens (1966, 1975)
and pages 127-133 of Sinn (1983) for a survey of these findings.
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With rule 2, when both π and γ are known to the contestants, the contest function is shown to
be an asymmetric perfectly-discriminatory one (or, the all-pay auction) as given by:

PP(ep, ed) =

 1 if Fp(ep)
Fd(ed) >

(1−π)γ
π(1−γ) ;

0 if Fp(ep)
Fd(ed) ≤

(1−π)γ
π(1−γ) .

The above contest function differs from typical applications of all-pay auctions Hillman and
Riley (1989); Kovenock et al. (1996); Che and Gale (1998) only in that it is asymmetric and also it
does not include an outcome that has a probability of 1/2 when the probability of guilt just equals
γ.14

When the evidence production process is stochastic, the efforts by P and D determine each
side’s probability h j(e j) of finding a favorable piece of evidence of a fixed value (E j) where j = p, d
rather than deterministically affecting the value of the evidence itself with h′j(e j) > 0.15 In such a
setting, by applying the above two alternative decision rules, they show that the contest functions
are of the difference-form variety. In particular, using rule 2 and some simplifying parametric
restrictions, they show that when P and D have a uniform prior over π, the contest function takes
the difference form as in (9) which closely resembles the piece-wise linear difference form contest
explored by Che and Gale (2000) except that it can be non-linear in ep and ed with hp and hd

interpreted as probabilities and bounded naturally between 0 and 1.
As the preceding discussion suggests, the theoretical research pertaining to contest functions is

both diverse and mature. We now turn to a discussion of issues involved in empirically estimating
such functions.

4. Some issues in econometric estimation

In contrast to the rich literature in contest theory, only a small body of the literature empir-
ically estimates and tests the contest functions examined in the previous section.16 There exist
several difficulties to empirically test the contest models against real data. First of all, although

14This latter difference, of course, could simply be eliminated by having the court flip a fair coin when that is the
case.

15These probabilities should of course be related to the truth. One way of explicitly incorporating the role of truth
would be parameterizing the two functions so that hp(ep) = θh(ep) and hd(ed) = (1 − θ)h(ed), for some increasing
function h(·) where θ > 1/2 when D is guilty, and θ < 1/2 when he is innocent.

16It is worth noting that the empirical literature on tournaments is closely related to the empirical studies of contests.
Briefly, the tournament literature aims to further our understanding of compensation and incentives within organiza-
tions. It shows that a firm may motivate employees by running competitions for rewards (e.g., promotions). This can
sometimes be preferable to individualistic schemes (e.g., bonuses). For instance, if accurately measuring individual
performance is costly, the firm may economize by measuring only rank ordering of performances. Tournament theory
generates many predictions. For example, it predicts that larger prizes motivate more effort and performance and a
greater effect of extra effort on the chance of winning brings greater motivation. Many of the empirical researches on
tournaments concentrate on verifying that tournaments work as suggested by the theory by using data from contexts
such as golf (Ehrenberg and Bognanno, 1990a,b), auto racing (Becker and Huselid, 1992), lab experiments (Bull et al.,
1987), agricultural (poultry) production (Knoeber and Thurman, 1994), and salary structures of CEO’s (Main et al.,
1993). However, very few tournament studies examine the mechanism that translates an individual’s effort into her
probability of winning, and therefore are beyond the scope of the current paper.
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micro-foundations of various conflict models are laid out, most influential contributions have been
derived under very restrictive assumptions about the underlying process. For example, it has
been known that the generalized ratio model is isomorphic to the logit model up to a logarithmic
transformation, thus both models preserve the independence of irrelevant alternatives property.
However, some empirical research suggests that the IIA property fails to hold in many real world
contests17. Some authors prefer the probit in order to overcome this technical difficulty. Second,
contestants’ efforts are generally unobservable to researchers. Proxies are usually used to restore
the information about players’ effort levels devoted to the contest. Since these proxies at best ap-
proximate to the real value, a potential measurement error issue rises from any attempts to estimate
the contest models. As a consequence, the accuracy of corresponding estimates is in doubt. Third,
since all contest models are highly nonlinear empirically comparing contest models becomes a
difficult task. In this section, we review some empirical studies of contests and discuss three main
issues of concern.

4.1. Data issues
To analyze contest models, Sunde (2003) sets up several standards to choose an appropriate

data set. Although his argument is based on sporting competitions, it actually applies to all the
empirical studies of contests. Unfortunately, these standards are often violated by many contest
data sets.

First, the data set should satisfy the Ford condition (see Hunter, 2004): in every possible
partition of the competing parties into two nonempty subsets, some party in the second set beats
some party in the first set at least once. This is because, as noted by Ford (1957), if it is possible
to partition the set of contestants into two groups A and B such that there are never any intergroup
comparisons, then there is no basis for rating any contestant in A with respect to any contestant in
B. On the other hand, if all the intergroup comparisons are won by a party from the same group, say
group A, then if all parameters belonging to A are doubled and the resulting vector renormalized,
the likelihood must increase; thus, the likelihood has no maximizer. The Ford condition eliminates
these possibilities.

Secondly, data sets of individualistic contests (such as tennis, golf, and boxing) are preferred to
the ones on team competitions (such as soccer, football, and basketball). In contests among teams,

17When testing the IIA condition, researchers generally use a multinomial logit model (MNLM), which is given
in (11), to capture contests among more than two contestants. There are several tests available for violations of IIA,
which compare the results from the full MNLM estimated with all possible outcomes to the results from a restricted
estimation that includes only some of the outcomes. IIA holds when the estimated coefficients of the full model are
statistically similar to those of the restricted one. If the test statistic is significant, the IIA property is not supported
by the data. Hence neither the generalized ratio model nor logit model properly characterizes the contest. The first
test of IIA was proposed by McFadden et al. (1981). This likelihood ratio test, hereafter MTT, compares the value of
the log-likelihood equation from the restricted estimation to the value obtained by substituting the estimates from the
full model into the log-likelihood equation for the restricted estimation. Small and Hsiao (1985) demonstrated that
the MTT test is asymptotically biased and proposed an alternative likelihood ratio test, known as the Small and Hsiao
test, that eliminates this bias. A third IIA test, proposed by Hausman and McFadden (1984), compares the estimates
from the full and restricted model. The most commonly used tests are the Hausman and McFadden (HM) test and
the Small and Hsiao (SH) test, which are frequently discussed in many econometrics texts (e.g., Greene, 2008; Train,
2003).
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the players act as agents on behalf of the team–which may be an actual employer (e.g., a club)
or some delegated authority (e.g., a national sports team). The difference between individualistic
and team contests is important for two reasons. On the one hand, in a contest among teams, the
team performances depend on not only individual players’ effort levels, but also the aptness of
the team members coordinating with each other. In sports competitions, we call this productive
interactions among team members “the chemistry” of a team. On the other hand, the classic free-
rider problem arises, where agents fail to internalize the benefit that accrue to other members
of the team when making effort decisions. Both reasons potentially add extra dimensions to the
empirical study of contest models and thus make them more difficult to analyze. A recent study
by Ahn et al. (2011) conducts a series of economic experiments to examine the behavior of groups
and individuals competing against each other in rent-seeking contests. By fitting their data against
the Tullock model (12) with µ = 1, their results show that, in contests between groups, individuals
show decreased effort levels when in groups rather than when playing as individuals, which can
be explained by the classical free-rider argument. Szymanski (2003) gives an excellent discussion
on the difference between individualistic and team contests.

Thirdly, Sunde (2003) further suggests that the data should have only two parties involved in
each contest. Specifically, limiting the consideration to only two parties has the advantage of not
having to consider complex strategic interactions such as coalition formation.

The fourth standard of choosing data set requires that the structure of information available
in contests should closely resemble the structure and requirements of information in theoretical
models, i.e., both prizes and the characteristics of participants should be known ex ante by every
player involved.

Finally, dynamic effects or long-term benefit streams over uncertain time horizons, which may
be embedded in the real-world data need to be filtered out.

As already mentioned, another issue pertaining to the data used in empirical study of contest
models is the potential unobservability of efforts. Estimating a contest model requires one to have
measures of effort levels of all contestants. However, measuring effort could be a very difficult
task, if it is possible at all. In general, effort is defined as a conscious exertion of power. The
word “conscious” reveals the subjective nature of this concept. Hence it is reasonable to argue that
contestants’ efforts are generally unobservable to researchers. In order to overcome this difficulty,
researchers have suggested to use the resources devoted to the contest to capture the essence of
efforts. For example, in the conflict literature, Collier and Hoeffler (1998) suggest using casual-
ties to proximate the efforts devoted to civil wars. Rotte and Schmidt (2002) and Hwang (2009)
propose using personnel strengths as proxies for the efforts of conflicting parties. In laboratorial
experiments, Fonseca (2009) and Ahn et al. (2011) use monetary contributions to the game to
represent the elicited efforts.

Even with the aid of this approximation, there are still some difficulties left in the empirical es-
timation of contests. The main difficulty arises due to the unquantifiable nature of some resources.
For instance, as the literature on military science suggests that, morale, intelligence, and logistics
are key factors in determining battlefield success. They certainly should be counted as part of the
resources devoted to the conflict. Since these factors are difficult to be quantified, one has no way
to aggregate them into the total resources expended. All these practices introduce measurement
error and hence endogeneity into the contest models, which will be discussed in details next.
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4.2. Endogeneity
Among many difficulties of empirically estimating the contest models, the potential for endo-

geneity calls for a special attention. In an econometric model, a parameter or a variable is said
to be endogenous when there is a correlation between the parameter or the variable and the error
term. Generally speaking, a loop of causality between the independent and dependent variables of
a model leads to endogeneity. As highlighted in the economic literature (e.g., see Miguel et al.,
2004), endogeneity generates inconsistent and biased estimates of the unknown parameters, which
adversely affects the explanatory power of the contest models. In general, endogeneity arises in
various situations including measurement error, autoregression with autocorrelated errors, simul-
taneity, omitted variables, and sample selection errors. For the study on contests, endogeneity
mainly comes in two possible ways.

One channel through which endogeneity affects the contest models is the measurement error.
As mentioned in 4.1, it is often very difficult to disentangle a player’s effort with her performance.
The generally accepted method of restoring the efforts data is to approximate them by using the
resources devoted to the contests. This approximation introduces measurement error into the esti-
mation and causes endogeneity problems.

The other possible cause of endogeneity comes from the suspicion that the dependent variable
(which is the contest outcome) may have some feedback effect on the explanatory variable (such as
efforts) invested in the game. In many contests, a success is achieved through a series of strategic
interactions. During this period, each competing party keeps updating the information about its
standing. It then makes the corresponding moves to reinforce its possibility of winning. It is
therefore clear that both competing parties’ total efforts invested in the contest could be affected
within the time frame of the game.

Inadequately addressing endogeneity among economic variables usually fails to establish a
convincing causal relationship. It often leads to biased estimates of parameters of interest and
false policy implications. In order to remove the endogeneity problem from the conflict model,
researchers are advised to do two things: (1) including instrumental variables (IV) to alleviate the
potential measurement error problem and (2) carefully scrutinize the data and remove observations
which could be possibly affected by the feedback effect. Generally speaking, an instrumental
variable is a variable that does not itself belong in the explanatory equation and is correlated with
the endogenous explanatory variables, conditional on the other explanatory variables. Formal
definitions of instrumental variables, using counterfactuals and graphical criteria, are given in
Pearl (2000). Heckman (2008) also gives a thorough discussion about the relationship between
instrumental variables method and causality in econometrics. As a rule of thumb, there are two
main requirements for using an IV:

1. The instrument must be correlated with the endogenous explanatory variables, conditional
on the other explanatory variables.

2. The instrument cannot be correlated with the error term in the explanatory equation, that is,
the instrument cannot suffer from the same problem as the original predicting variable.

In the contest literature, researchers pick variables such as precipitation (e.g., Miguel et al.,
2004) as an IV to rectify the bias caused by endogeneity. The second treatment, data cleansing,
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requires the researchers to identify the potential feedback effect between the error terms and the
explanatory variables. In the current context, any contest observation involving strategic inter-
actions between two competing parties should be removed from the data set. For example, Jia
(2008a) explains why certain observations have to be removed from the data set when he attempts
to estimate and compare various contest models using National Basketball Association data.

Specifically, Jia (2008a) argues that there are two potential channels through which the feed-
back effect operates. The first channel can be described as follows. Consider in particular the
following two polar cases that might arise in some stage of the regular season play. (1) A team has
played sufficiently well so as to secure its first standing in its own division. In this case, the team
may “shirk,” i.e., exert less effort and hence throw away some of the remaining games. (2) A team
has played so poorly that it loses any hope of entering the playoffs. In such a case, it is also likely
that the team will shirk in the following games. In both cases, the previous game results affect the
current and future effort levels.

The second channel mentioned in Jia (2008a) is on a more micro level. Consider the case when
one team holds a significant advantage over its opponent at the end of the third quarter so that the
outcome of the game has already been decided. It is fairly common to observe that the coaches
of one or both teams replace their best players with substitutes during the fourth quarter, which
is usually known as “garbage time.” This practice serves to give those substitutes playing time
experience in an actual game situation, as well as to protect the best players from the possibility
of injury.

In view of these two potential feedback effects between the error terms and the explanatory
variables, Jia (2008a) deletes all the games in which one team holds a significant advantage (≥ 20
points) over the other at the end of the third quarter, which guarantees there is no “garbage time”
exists in the resulting data set. He further deletes the observations in the final stage of the regular
seasons – specifically, the regular season NBA games after March 31. Each NBA team has about
ten additional games following this March 31 cutoff before the end of the regular season. Omitting
those observations after March 31 largely removes the possibility that any team knows its final
standing for sure.

4.3. Model Comparison
As shown in the previous discussion, there are many ways to model contest situations in terms

of the (relative) resources invested by the parties involved. In particular, three models are promi-
nent in the literature. They are generalized ratio or “Tullock”model (3), logit model (7), and probit
model (8). The main difference among these three models lies in the assumptions made on the
distributions of the error terms. McFadden (1974) shows that the logit model is based upon the
assumption that the error terms are extreme value distributed. As shown by Jia (2008b), the gen-
eralized Tullock model assumes the error terms have an inverse exponential distribution, which is
isomorphic to the logit model up to a logarithmic transformation. The probit model, on the other
hand, relies on the assumption that the error terms are normally distributed. It is therefore natural
to wonder what model best captures the characteristics of a particular contest and gives the most
accurate predictions.

The effort to decide among these three models has been frustrated by the fact that despite the
three models entail quite different theoretical consequences, they are practically indistinguishable
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with data. For instance, Burke and Zinnes (1965) compare a probit model (T ) and a logit model
(L) and claim:

Unfortunately, the nature of the solutions makes it very difficult to design an exper-
iment for deciding between the theories. . . For the Gulliksen-Tukey (1958), Guilford
(1954), and Thurstone (1959) data, the T predictions are considerably better than the
L predictions.

Yet Hohle (1966) finds that

(a) neither model provided uniformly satisfactory representations for the data, and (b)
(for) all six sets of data were more accurately represented by Model II (L) than by
Model I (T ).

In a comprehensive survey, Batchelder (1983) concludes that it would require an unrealis-
tic amount of data to achieve any reasonable power in testing between them statistically. Stern
(1990) uses Gamma distribution to approximate the probit and logit models and compares their
performances against the game results from the 1986 National League baseball season. He also
concludes it is disturbing to find so little difference between these two models.

This problem arises because of two reasons. Firstly, all three models are highly nonlinear, and
yet a commonly accepted goodness-of-fit measure is unavailable to achieve a convincing conclu-
sion. Secondly, the generalized ratio and the logit models are isomorphic and thus nested together.
The classic econometric theory fails to cope with these two problems.

One possible remedy is provided by Bayesian Econometrics. As opposed to classic methods,
the Bayesian approach treats any two candidate models as hypotheses. Rather than artificially
designing some goodness-of-fit statistics, Bayesians choose a natural criterion, the Bayes factor,
to compare alternative models. The Bayes factor for model A1 versus model A2 can be defined as

B12 =
f (y|A1)
f (y|A2)

,

where
f (y|Ai) =

∫
Θi

f (θi|Ai) f (y|θi, Ai)dθi

is the marginal likelihood of model i, i = 1, 2 (see Kass and Raftery, 1995).
The interpretation of the Bayes factor is given by (Jeffreys, 1961, Appendix B), and Kass and

Raftery (1995). Jeffreys suggests the following criterion as the “order of magnitude” interpretation
of B12:

1 < B12 < ∞, evidence supports A1,
10−1/2 < B12 ≤ 1, very slight evidence against A1,
10−1 < B12 ≤ 10−1/2, slight evidence against A1,
10−2 < B12 ≤ 10−1, strong evidence against A1,
0 < B12 ≤ 10−2, decisive evidence against A1.

The key step in the Bayesian model comparison is computing a good approximation to the
marginal likelihoods. For our nonlinear regression models (generalized ratio, logit, probit), the
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main difficulty is that the marginal likelihood functions cannot be expressed directly as some pos-
terior moments, and consequently the computation cannot be interpreted directly as a special case
of the simulation-consistent approximation of posterior moments. Fortunately, there are computa-
tional methods specifically tailored to overcome these kinds of problems. Interested readers can
find a detailed description of two different methods to compute the marginal likelihoods of probit
and logit models respectively in Appendix of Jia and Skaperdas (2011).

5. Concluding remarks

Many interesting real world phenomena such as sports, advertising competition, research or
labor tournaments, or court battles are adversarial settings where the outcome is typically uncertain
but it does depend on the efforts expended by adversaries. We have considered contest functions
to be probabilistic choice functions that depend on the efforts of adversaries. We have examined
both their theoretical foundations and several issues in estimating them empirically. It is of some
interest that all four types of theoretical foundations can yield under some conditions the ratio
functional form, which also happens to be the most used functional form in applications. Whereas
research on theoretical foundations is rather mature, there is much less empirical research on the
topic - that is clearly a promising area for future research.
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